

CHEMISTRY QUESTIONS FOR CLAIM

PHYSICAL CHEMISTRY 09-01-2019_1ST SHIFT 5. 0.5 moles of gas A and x moles of gas B exert a pressure of 200 Pa in a container of volume 10 m³ at 1000 K. Given R is the gas constant in $JK^{-1}mol^{-1}$, x is : (1) $\frac{2R}{4-R}$ (2) $\frac{4+R}{2R}$ (3) $\frac{4-R}{2R}$ (4) $\frac{2R}{4+R}$ Ans. (3) Sol. PV = nRT

$$200 \frac{N}{m^{2}} \times 10m^{3} = (0.5 + x) \times R \times 1000$$
$$0.5 + x = \frac{2}{R}; \ x = \frac{4 - R}{2R}$$

23. For emission line of atomic hydrogen from $n_i = 8 \text{ ton}_f = n$, the plot of wave number (\overline{v}) against

(2) Non linear

(4) Linear with slope $-R_{H}$

 $\left(\frac{1}{2}\right)$ will be (The Rydberg constant, R_H is in wave number unit)

(1) Linear with intercept $-R_{H}$

(3) Linear with slope R_H

Ans. (3)

Sol.
$$\because \quad \overline{v} = R_H \cdot Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
$$= R_H \cdot 1^2 \left(\frac{1}{n_f^2} - \frac{1}{8^2} \right)$$
$$\overline{v} = \frac{R_H}{n_f^2} - \frac{R_H}{64}$$

Linear with slope R_{H} .

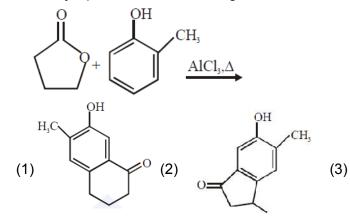
PHYSICAL CHEMISTRY 11-01-2019_1st SHIFT

23. For the cell Zn(s)Zn²⁺(aq)M^{x+}(aq)M(s), different half cells and their standard electrode potentials are given below :

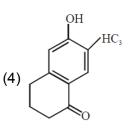
$M^{x+}(aq/M(s)$	Au ³⁺ (aq)/	Ag ⁺ (aq)/	Fe ³⁺ (aq)/	Fe ²⁺ (aq)/
	Au(s)	Ag(s)	Fe ²⁻ (aq)	Fe(s)
$E^{o}_{M^{a^{i}}/M^{(v)}}$	1.40	0.80	0.77	-0.44

If, $E_{Zn^{2+}/Zn}^{o} = -0.76V$, which cathode will give a maximum value of E_{cell} per electron transferred? (1) Fe^{3+}/Fe^{2+} (2) Au^{3+}/Au (3) Ag^{+}/Ag (4) Fe^{2+}/Fe

Ans. (1)


Sol. $E_{cell}^{o} = E_{Au^{+3}|Au(s)}^{o} - E_{Zn^{+2}|Zn(s)}^{o}$

= 1.4 V – (–0.76 V) = 2.16 V


 E_{cell}^{o} is maximum with $E_{Au^{+3}|Au(s)}^{o}$ and E_{cell}^{o} is intensive property so does not depend on number of electron transferred in cell reaction.

ORGANIC CHEMISTRY 09-01-2019_2ND SHIFT

18. The major product of the following reaction is :

Ans. (3) Sol.

[2]