SOLUTIONS

 WEEKLY TEST-2

 WEEKLY TEST-2 GZRS-1902 (JEE ADVANCED PATTERN) Test Date: 10-12-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (B)

Angle between \vec{a} and $\overrightarrow{\mathrm{p}}$ is:

$\theta=\cos ^{-1} \frac{\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{p}}}{|\overrightarrow{\mathrm{a}} \| \overrightarrow{\mathrm{p}}|}$
$=\cos ^{-1}\left\{\frac{32-18}{\sqrt{(16+9) \sqrt{(64+36)}}}\right\}$
$=\cos ^{-1}\left(\frac{14}{50}\right)$
Clearly both are not perpendicular, hence accelerated circular motion
2. (C)

$$
\begin{aligned}
& \tan \theta=\frac{a_{c}}{a_{t}} \\
\therefore \quad & \frac{a_{c}}{a_{t}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

3. (D)

$$
\frac{\Delta \mathrm{V}}{\mathrm{~V}} \times 100=3\left(\frac{\Delta \ell}{\ell} \times 100\right)
$$

4. (B)

Work done depends upon frame of reference.
5. $\mathrm{a}=-\mathrm{s}, \quad \mathrm{v} \frac{\mathrm{dv}}{\mathrm{ds}}=-\mathrm{s}, \int_{\mathrm{v}_{0}}^{0} \mathrm{vdv}=-\int_{0}^{\mathrm{s}} \mathrm{sds}, \frac{\mathrm{v}_{0}^{2}}{2}=\frac{\mathrm{s}^{2}}{2} \Rightarrow s=v_{0}$
$\therefore \quad$ (B)
6. Time to cross river $(t)=\frac{\mathrm{AB}}{\mathrm{v}_{\mathrm{mr}} \sin \theta}=\frac{0.4}{5 \sin \theta}$

$$
\begin{aligned}
& \mathrm{BC}=\left(\mathrm{v}_{\mathrm{mr}} \cos \theta+\mathrm{v}_{\mathrm{r}}\right) \mathrm{t} \\
& \Rightarrow \quad 0.4=(5 \cos \theta+1) \times \frac{0.4}{5 \sin \theta} \Rightarrow \quad 5 \sin \theta-5 \cos \theta=1 \\
& \Rightarrow \quad 25 \sin ^{2} \theta+25 \cos ^{2} \theta-50 \sin \theta \cos \theta=1 \Rightarrow 25 \sin 2 \theta=24 \\
& \Rightarrow \quad \sin 2 \theta=\frac{24}{25} \Rightarrow \theta=53^{\circ} \\
& \therefore \quad \text { (C) }
\end{aligned}
$$

7. (B)
8. (A)

$$
u^{2}=5 g R
$$

$$
\therefore \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gR}
$$

$$
=5 \mathrm{gR}-2 \mathrm{gR}=3 \mathrm{gR}
$$

Tangential acceleration at B is

$$
a_{\mathrm{t}}=\mathrm{g} \text { (downwards) }
$$

Centripetal acceleration at B is
$\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=3 \mathrm{~g}$
\therefore Total acceleration will be
$a=\sqrt{a_{C}^{2}+a_{t}^{2}}=g \sqrt{10}$
9. (B)

As $\mathrm{W}=\Delta \mathrm{K}$
Force is along negative x -axis and displacement is along +x -axis
$\therefore W=$ negative
Hence
$\Delta K=$ negative
10. (B)

Take the mass m as a point mass. At the instant when the pendulum collides with the nail, m has a velocity $\mathrm{v}=\sqrt{2 \mathrm{~g} \ell}$. The angular momentum of the mass with respect to the point at which the nail locates is conserved during the collision. Then the velocity of the mass is still \mathbf{v} at the instant after the collision and the motion thereafter is such that the mass is constrained to rotate around the nail. Under the critical condition that the mass can just swing completely round in a circle, the gravitational force when the mass is at the top of the circle. Let the velocity of the mass at this instant be \mathbf{v}_{1}, and we have

$$
\frac{\mathrm{mv}_{1}^{2}}{\ell-\mathrm{d}}=\mathrm{mg}
$$

$$
\text { or } \quad \mathrm{v}_{1}{ }^{2}=(\ell-\mathrm{d}) \mathrm{g}
$$

The energy equation

$$
\frac{\mathrm{mv}^{2}}{2}=\frac{\mathrm{mv}_{1}^{2}}{2}+2 \mathrm{mg}(\ell-\mathrm{d}),
$$

or $\quad 2 \mathrm{~g} \ell=(\ell-\mathrm{d}) \mathrm{g}+4(\ell-\mathrm{d}) \mathrm{g}$
then gives the minimum distance as

$$
d=\frac{3 \ell}{5}
$$

11. (D)
12. (B)

For stone thrown from top of the tower

$$
\begin{equation*}
-40=\left(v_{1} \sin \theta_{1}\right) t-\frac{1}{2} g t^{2} \tag{i}
\end{equation*}
$$

For stone thrown from bottom of the tower

$$
\begin{equation*}
0=\left(v_{2} \sin \theta_{2}\right) t-\frac{1}{2} g t^{2} \tag{ii}
\end{equation*}
$$

By (i) and (ii)

$$
\begin{equation*}
-40=v_{1} \sin \theta_{1} t-v_{2} \sin \theta_{2} t \tag{iii}
\end{equation*}
$$

But $t=\frac{20 \sqrt{3}}{v_{1} \cos \theta_{1}}=\frac{20 \sqrt{3}}{v_{2} \cos \theta_{2}}$
So, $\quad-40=\left(v_{1} \sin \theta_{1}\right)\left(\frac{20 \sqrt{3}}{v_{1} \cos \theta_{1}}\right)-\left(v_{2} \sin \theta_{2}\right)\left(\frac{20 \sqrt{3}}{v_{2} \cos \theta_{2}}\right)$

$$
-40=20 \sqrt{3}\left(\tan \theta_{1}-\tan \theta_{2}\right)
$$

$$
\begin{equation*}
\tan \theta_{2}-\tan \theta_{1}=\frac{2}{\sqrt{3}} \tag{v}
\end{equation*}
$$

Given $\theta_{1}=30^{\circ} \Rightarrow \quad \tan \theta_{2}=\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}$
$\Rightarrow \quad \theta_{2}=60^{\circ}$
Putting $t=\frac{20 \sqrt{3}}{v_{2} \cos \theta_{2}}$ in equation (ii) $\frac{v_{2} \sin \theta_{2} \times 20 \sqrt{3}}{v_{2} \cos \theta_{2}}-\frac{1}{2} g t^{2}=0$

$$
20 \sqrt{3} \tan \theta_{2}-\frac{1}{2} g t^{2}=0, \quad t=\sqrt{\frac{40 \times 3}{10}}=2 \sqrt{3} \mathrm{~s}
$$

By equation (iv), $v_{1}=\frac{20 \sqrt{3}}{2 \sqrt{3} \times \cos 30^{\circ}}=\frac{20}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$

$$
v_{2}=\frac{20 \sqrt{3}}{2 \sqrt{3} \times \cos 60^{\circ}}=20 \mathrm{~m} / \mathrm{s}
$$

13. Because resultant velocity is always perpendicular to line joining C and boat, so path is circular with center at C.
$\therefore \quad(\mathrm{C})$
14. Let any time the velocity of boat with respect to river makes an angle α with $C P$.

Since along $C P$, net velocity is zero
$u \cos \alpha=u \sin \theta$

$$
\begin{aligned}
& \cos \alpha=\sin \theta \Rightarrow \alpha=\frac{\pi}{2}-\theta \\
& \mathrm{V}_{\text {resultant }}=u \sin \alpha+u \cos \theta \\
& =u \cos \theta+u \cos \theta=2 u \cos \theta
\end{aligned}
$$

Angular velocity $\omega=\frac{2 u \cos \theta}{2 d}=\frac{u \cos \theta}{d}, \quad \frac{d \theta}{d t}=\frac{u \cos \theta}{d}$

$$
\begin{aligned}
& \int_{0}^{\pi / 3} \frac{d \theta}{\cos \theta}=\int_{0}^{t} \frac{u}{d} d t \Rightarrow t=\frac{d}{u} \ln [2+\sqrt{3}] \\
& \therefore \quad \text { (B) }
\end{aligned}
$$

15. (A)
16. (A)
17. (B)

18. (A)

$$
\begin{aligned}
& T=\frac{w}{\sin \left(180-53^{0}\right)}=\frac{5 w}{4} \\
& F_{2}=T \sin \left(180-37^{0}\right)=\frac{3 w}{4}
\end{aligned}
$$

and $F_{1}=\frac{T}{\sin \left(180-37^{0}\right)}=\frac{5 T}{3}=\frac{25}{12} w$
$\frac{T^{\prime}}{\sin \left(180^{\circ}-53^{\circ}\right)}=\frac{F_{1}}{\sin 90^{\circ}}$
$\Rightarrow T^{\prime}=\frac{25}{12} w \times \frac{4}{5}=\frac{5 w}{3}$
$\therefore \quad(A)-2,(B)-4,(C)-1,(D)-3$
19. (A)

Let maximum speed of motorbike $=v$
$40 \times 27=\frac{1}{2}(27+9) v$
$v=60 \mathrm{~m} / \mathrm{s}$
So acceleration of motorbike $=\frac{60}{18}=\frac{10}{3}$

Maximum separation $=$ shaded area
$=\frac{1}{2} \times 40 \times O D=\frac{1}{2} \times 40 \times 12=240$
Separation at $t=18=240-\frac{1}{2} \times 20 \times 6=$
$\therefore \quad(A)-2,(B)-3,(C)-4,(D)-1$
20. (B)

If maximum extension is x_{m},
By conservation of energy,

$$
\begin{aligned}
& \frac{1}{2} k x_{m}^{2}=m_{A} g x_{m} \\
& \frac{1}{2} \times 200 \times x_{m}=10 \times 10 \\
& \boldsymbol{x}_{m}=1 \mathrm{~m}
\end{aligned}
$$

Let extension in spring is x_{1} when velocity of m_{A} is $\sqrt{10 / 3} \mathrm{~m} / \mathrm{s}$. The velocity of m_{B} will also be $\sqrt{\frac{10}{3}} \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& \frac{1}{2} m_{\mathrm{A}} v^{2}+\frac{1}{2} m_{B} v^{2}+\frac{1}{2} k x_{1}^{2}=m_{A} g x_{1} \\
& \frac{1}{2} \times 10 \times \frac{10}{3}+\frac{1}{2} \times 5 \times \frac{10}{3}+\frac{1}{2} \times 200 x_{1}^{2}=10 \times 10 \times x_{1} \\
& 25+100 x_{1}^{2}=100 x_{1} \\
& 4 x_{1}^{2}-4 x_{1}+1=0 \\
& \left(2 x_{1}-1\right)^{2}=0 \\
& \boldsymbol{x}_{\mathbf{1}}=\frac{\mathbf{1}}{\mathbf{2}}=\mathbf{0 . 5} \mathbf{~ m}
\end{aligned}
$$

If acceleration of m_{A} and m_{B} is a

$$
\begin{align*}
& T-k x_{1}=m_{B} a \\
& T-200 \times 0.5=5 a \\
& T=5 a+100 \tag{i}\\
& m_{A} g-T=m_{A} a \\
& 10 \times 10-T=10 a \\
& T=100-10 a \tag{ii}\\
& \begin{array}{l}
\text { (i) and (ii) } \quad \Rightarrow \\
\mathbf{a}=\mathbf{0}
\end{array} \\
&
\end{align*}
$$

When acceleration m_{B} is $4 \mathrm{~m} / \mathrm{s}^{2}$, the acceleration of m_{A} will also be $4 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{gather*}
T-k x=m_{B} a \\
T-200 x=20 \tag{i}\\
m_{A} g-T=m_{A} a \\
100-T=40 \tag{ii}\\
\text { (i) }+(\text { (ii }) \Rightarrow 100-200 x=60 \\
\\
x=\frac{40}{200}=\frac{1}{5} \mathrm{~m} \\
\\
\\
U=\frac{1}{2} k x^{2}=\frac{1}{2} \times 200 \times \frac{1}{25}=4 \text { (i) } \\
\therefore \quad \\
\\
\text { (A) }-4, \text { (B) }-1, \text { (C) }-3 \text {,(D) }-5
\end{gather*}
$$

CHEMISTRY

21. (B)

Let dibasic acid is $\mathrm{H}_{2} \mathrm{~A}$
Silver salt: $\mathrm{Ag}_{2} \mathrm{~A}$
$\underset{\substack{0.90 \mathrm{~g}}}{\mathrm{Ag}_{2} \mathrm{~A}} \longrightarrow \underset{0.54 \mathrm{~g}}{\mathrm{Ag}}$
By POAC of Ag
$2 \times \frac{0.90}{\left(216+M_{A^{2-}}\right)}=\frac{0.54}{108}$
$\left(216+\mathrm{M}_{\mathrm{A}^{-}}\right)=360$
$M_{A^{2-}}=360-216=144$
Mol. wt $\mathrm{H}_{2} \mathrm{~A}=2+144=146$
22. (C)

Law of multiple proportion is defined for different compounds having same constituent elements.
23. (A)
$\mathrm{P}_{\mathrm{N}_{2}}+10 \mathrm{~cm}$ of $\mathrm{Hg}+\frac{380.8}{13.6}=76$
or, $\mathrm{P}_{\mathrm{N}_{2}}=38 \mathrm{~cm}$ of $\mathrm{Hg}=\frac{1}{2} \mathrm{~atm}$
Now, $\mathrm{PV}=\mathrm{nRT}$ for N_{2}
$\frac{1}{2} \times 1=n \times \frac{1}{12} \times 360$
or, $\mathrm{n}=\frac{1}{60}$ mole
mass of nitrogen $=\frac{1}{60} \times 28=\frac{14}{30} \mathrm{~g}$
$\%=\frac{14}{30 \times 1.4} \times 100=33.33 \%$
24. (D)
$V_{c}=3 b$
or, $3=3 \mathrm{~b}$ or $\mathrm{b}=1$ litre $/ \mathrm{mol}$

Now, $b=4 \times \frac{4}{3} \pi r^{3} N_{\text {A }}$
or, $\sqrt[3]{\frac{1000 \times 3}{16 \pi \mathrm{~N}_{\mathrm{A}}}}=r$
or, $r=\left(\frac{3000}{16 \pi \mathrm{~N}_{\mathrm{A}}}\right)^{1 / 3} \mathrm{~cm}$
25. (D)

At same T, K.E. is equal and P.E. of gas > P.E. of liq.
26. (C)
27. (C)
28. (A)
29. (D)

In (A) and (B) use (z / e) concept for isoelectronic specie.
In (C) size of neutral atom is greater than its cation.
In (D) Se^{2-} and As^{3-} related with 4th period, while Ba^{2+} and Cs^{+}related with 6th period.
(These are not isoelectronic species)
30. (C)

Due to diagonal relationship radius of Li^{+}is close to Mg^{2+} ion
31. (B)

Difference in vertical height $=5 \mathrm{~cm}$.
32. (D)

Vertical difference of height is 5 cm .
Now,
$\rho_{1} h_{1}=\rho_{2} h_{2}$
$5 \times \rho_{\mathrm{Hg}}=\frac{\rho_{\mathrm{Hg}}}{2} \times \mathrm{h}_{2}$
or, $h_{2}=10 \mathrm{~cm}$
$l=\frac{10}{\sin 30^{\circ}}=20 \mathrm{~cm}$
33. (C)
34. (A)
35. (C)
O^{-}ion will resist the addition of another electron due to inter-electronic repulsion.
36. (D)

B $<$ S $<$ P $<$ F (Data base)
37. (D)
(A) - (R); (B) - (S); (C) - (P); (D) - (Q)
38. (C)
(A) - (R);
(B) $-(Q)$;
(C) — (P); (D) — (S)
39. (A)
(A) - (Q);
(B) - (R);
(C) - (S); (D) — (P)
40. (C)
(A) - (R); (B) - (S); (C) - (Q); (D) — (P)
MATHEMATICS
41. (A)

Let P is (h, k) then $|h-2|+|k-3|=1$
$\Rightarrow|x-2|+|y-3|=1$
which is a square having centre at $(2,3)$.
42. (A)
$3^{x}=4^{x-1} \Rightarrow \quad \log _{2} 3^{x}=(x-1) \log _{2} 4=2(x-1)$
or $x \log _{2} 3=2 x-2$
or $x=\frac{2}{2-\log _{2} 3}$
Rearranging, we get
$x=\frac{2}{2-\frac{1}{\log _{2} 2}}=\frac{\frac{1}{\log _{4} 3}}{\frac{1}{\log _{4} 3}-1}=\frac{1}{1-\log _{4} 3}$.
43. (B)

Let α, β are the roots of given equation
$\alpha+\beta=\frac{4+\sqrt{5}}{5+\sqrt{2}}, \alpha \beta=\frac{8+2 \sqrt{5}}{5+\sqrt{2}}$
$H=\frac{2 \alpha \beta}{\alpha+\beta}=\frac{2(8+2 \sqrt{5})}{(4+\sqrt{5})}=4$
44. (D)
$(\alpha \beta \gamma)^{\frac{1}{3}} \geq \frac{\alpha+\beta+\gamma}{3} \Rightarrow \alpha=\beta=\gamma$
Again $\alpha+6 \beta+5 \gamma=12 \Rightarrow \alpha=\beta=\gamma=1$
$\Rightarrow \alpha^{5}+\beta^{3}+\gamma^{9}=3$
45. (B)
$\frac{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}+\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^{2}}}{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}-\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^{2}}}=\frac{\sin \frac{x}{2}+\cos \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\sin \frac{x}{2}+\cos \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}=\tan \frac{x}{2}$
46. (A)

$$
\begin{aligned}
& x+\sqrt{3} y=\sqrt{3} \\
& (y+1)=\frac{1}{\sqrt{3}} x \\
& \sqrt{3} y=x-\sqrt{3}
\end{aligned}
$$

47. (A)

The lines represented by the given equation will be coincident if $h^{2}-a b=0$.
Here, $a=2, b=k, h=4$.
Substituting the values, we get $(4)^{2}-2 k=0 \Rightarrow k=8$.
48. (D)

$$
4 \sin \left(1+\frac{\pi}{6}\right) \cos \left(1+\frac{\pi}{3}\right)=2\left[\sin \left(2+\frac{\pi}{2}\right)+\sin \left(-\frac{\pi}{6}\right)\right]
$$

49. (C)

Taking logarithm, $\left(\frac{3}{4} y^{2}+y-\frac{5}{4}\right) y=\frac{1}{2}$ where $y=\log _{2} x \Rightarrow \log _{2} x=1,-\frac{1}{3},-2$
$\Rightarrow x=2, \sqrt[3]{\frac{1}{2}}, \frac{1}{4}$
50. (A)
$t_{r+1}=\frac{a_{2 n+1-r}-a_{r+1}}{a_{2 n+1-r}+a_{r+1}}, r=0,1,2, \ldots n-1 .=\frac{a_{1}+(2 n-r) d-\left\{a_{1}+r d\right\}}{a_{1}+(2 n-r) d+\left\{a_{1}+r d\right\}} .=\frac{(n-r) d}{a_{1}+n d}$
\therefore The sum is $S_{n}=\sum_{r=0}^{n-1} t_{r+1}=\sum_{r=0}^{n-1} \frac{(n-r) d}{a_{1}+n d}$

$$
=\left[\frac{n+(n-1)+(n-2)+\ldots+1}{a_{1}+n d}\right] d=\frac{n(n+1) d}{2 a_{n+1}}=\frac{n(n+1)}{2} \times \frac{a_{2}-a_{1}}{a_{n+1}}
$$

51. (B)

Image of $A(1,3)$ in line $x+y=2$ is $\left(1-\frac{2(2)}{2}, 3-\frac{2(2)}{2}\right) \equiv(-1,1)$
So line $B C$ passes through $(-1,1)$ and $\left(-\frac{2}{5},-\frac{2}{5}\right)$.
Equation of line $B C$ is $y-1=\frac{-2 / 5-1}{-2 / 5+1}(x+1) \Rightarrow 7 x+3 y+4=0$
52. (C)

Vertex B is point of intersection of $7 x+3 y+4=0$ and $x+y=2$ i.e. $B=(-5 / 2,9 / 2)$
53. (C)

$$
\begin{aligned}
& \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}=\sin \frac{5 \pi}{14} \sin \frac{3 \pi}{14} \cdot \sin \frac{\pi}{14} \\
& \quad=\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}=-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}=-\frac{\sin \frac{8 \pi}{7}}{8 \sin \frac{\pi}{7}}=\frac{1}{8}
\end{aligned}
$$

54. (B)

$$
\begin{aligned}
& \cos 2^{3} \frac{\pi}{10} \cos 2^{4} \frac{\pi}{10} \cdot \cos 2^{5} \frac{\pi}{10 \ldots \cos 2^{10} \frac{\pi}{10}} \\
& =\frac{\sin 2^{11} \frac{\pi}{10}}{256 \sin 2^{3} \frac{\pi}{10}}=\frac{1}{256}\left[\frac{1}{256} \cdot \frac{\sin \left(2^{8} \cdot \frac{8 \pi}{10}\right)}{\sin \left(\frac{8 \pi}{10}\right)}\right]
\end{aligned}
$$

$$
=\frac{\sin \left(256 \pi+\frac{8 \pi}{10}\right)}{256 \cdot \sin \left(\frac{8 \pi}{10}\right)}=\frac{\sin \frac{8 \pi}{10}}{\sin \frac{8 \pi}{10}} \cdot \frac{1}{256}=\frac{1}{256} .
$$

55. (C)
$\frac{x-2}{3}=\frac{y-3}{-4}=-15 \frac{6-12+1}{25}=3$
$\therefore \mathrm{x}=11, \mathrm{y}=-9 \therefore \alpha=2$
56. (D)
$\frac{x-1}{-5}=\frac{y-1}{12}=26 \frac{-5+12+6}{169}=2$
$x=-9, y=25 \quad \therefore \beta=16$
57. (A)
$(P) a=\frac{p}{2}\left\{2 a_{1}+(p-1) d\right\}$,

$$
\mathrm{b}=\frac{\mathrm{q}}{2}\left\{2 \mathrm{a}_{1}+(\mathrm{q}-1) \mathrm{d}\right\}
$$

$$
c=\frac{r}{2}\left\{2 a_{1}+(r-1) d\right\}
$$

$\therefore \sum \frac{\mathrm{a}}{\mathrm{p}}(\mathrm{q}-\mathrm{r})=0$
(Q) $R=a^{r-1}$

$$
\begin{aligned}
& \quad R^{s-t}=a^{s-t} k^{(s-t)(r-1)} \\
& S^{t-r}=a^{t-r} k^{(s-1)(t-r)} \\
& T^{r-s}= a^{r-s} k^{(t-1)(r-s)} \\
& \therefore \quad R^{s-t} S^{t-r} T^{r-s}=1 .
\end{aligned}
$$

(R) $x^{y-z} \cdot y^{z-x} z^{x-y}=\left(A R^{m-1}\right)^{(n-p) d}\left(A R^{n-1}\right)^{(p-m) d}\left(A R^{p-1}\right)^{(m-n) d}=1$
(S) $\sum a(b-c) \log a=\frac{1}{a b c} \sum\left(\frac{1}{c}-\frac{1}{b}\right) \log a=\frac{1}{a b c} \sum(r-q) d(\log A+(p-1) \log R)=0$
58. (B)
(P) Reduce the expression in the form of $l \cos \theta+m \sin \theta$ whose maximum is $\sqrt{l^{2}+m^{2}}$
(Q) $\cos 2 \alpha+\cos 2 \beta=2 \cos (\alpha+\beta) \cdot \cos (\alpha-\beta)$
$\Rightarrow \max \cdot(\cos 2 \alpha+\cos 2 \beta)=2|\cos (\alpha+\beta)|$
(R) $\sin 2 \alpha+\sin 2 \beta=2 \sin (\alpha+\beta) \cos (\alpha-\beta)$
\therefore maximum value $=2|\cos (\alpha-\beta)|$
(S) $\theta \in\left(0, \frac{\pi}{2}\right)$
$\tan \theta+\cot \theta \geq 2$
$\tan \theta+\cot \theta-2 \cos 2(\alpha+\beta) \geq 2-2 \cos 2(\alpha+\beta) \geq 4 \sin ^{2}(\alpha+\beta)$
59. (C)
(P) Let P be the point (α, β), then $\alpha^{2}+\beta^{2}+2 \alpha+2 \beta=0$ mid point of OP is $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$.
\therefore Locus of $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$ is $4 x^{2}+4 y^{2}+4 x+4 y=0$
i.e., $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}+\mathrm{y}=0 \therefore 2 \mathrm{~g}=1,2 \mathrm{f}=1 \quad \therefore \mathrm{~g}+\mathrm{f}=1$
(Q) Centres of the circle are (1, 2), (5, -6).

Equation of $\mathrm{C}_{1} \mathrm{C}_{2}$ is $\mathrm{y}-2=-\frac{8}{4}(\mathrm{x}-1)$
i.e., $2 x+y-4=0$

Equation of radical axis is $8 x-16 y-56=0$
i.e., $x-2 y-7=0$

Points of intersection is $(3,-2)$.
(R) Let length of common chord be 2a, then

$$
\begin{aligned}
& \sqrt{9-a^{2}}+\sqrt{16-a^{2}}=5 \Rightarrow \sqrt{16-a^{2}}=5-\sqrt{9-a^{2}} \\
& 16-a^{2}=25+9-a^{2}+10 \sqrt{9-a^{2}} \\
& \sqrt{9-a^{2}}=18 \Rightarrow 100\left(9-a^{2}\right)=324 \\
& \text { i.e., } 100 a^{2}=576 \\
& \therefore a=\sqrt{\frac{576}{100}}=\frac{24}{10} \quad \therefore \quad 2 a=\frac{24}{5}=\frac{k}{5} \Rightarrow k=24
\end{aligned}
$$

WT-2 (ADV) GZRS-1902_10.12.2017
(S) Equation of common chord is $6 x+4 y+p+q=0$ common chord pass through centre $(-2,-6)$ of circle $x^{2}+y^{2}+4 x+12 y+p=0$
$\therefore \mathrm{p}+\mathrm{q}=36$
60. (C)
(P)
$\therefore \quad 2|\mathrm{x}|+3 \mathrm{y} \leq 6$ will represent the shaded region as shown in figure.

$\therefore \quad$ required area $=4 \times \frac{1}{2} \times 3 \times 2$.
$=12$ sq. units.
(Q)
$\therefore \quad D\left(1, \frac{1}{2}\right)$
$\therefore \quad C D$ is perpendicular $A B . \quad \Rightarrow \frac{k-\frac{1}{2}}{2-1}=2$.

$\Rightarrow \quad \mathrm{k}=\frac{5}{2}$.
$\therefore \quad$ slope of $B C=\frac{3}{4}$
$\therefore \quad 4 m=3$.
(R)
$\therefore \quad$ Area of triangle $A B C=20$ square units

$\therefore \quad$ C can not be at D and E.
\therefore four positions are possible two above $A B$ and two below $A B$.
(S)

$$
\begin{gathered}
\therefore \quad \frac{\alpha+\alpha+0}{3}=2 \\
\\
\alpha=3 .
\end{gathered}
$$

$$
\therefore \quad x \text { - coordinate of } B=3 .
$$

