

MENTORS EDUSERV ALL INDIA TEST SERIES 2018

PART TEST - 2

AIIMS PATTERN TEST

Date:	01/	/12/	/2017

Duration: 3¹/₂ Hours.

Maximum Marks: 200

[Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.]

This Booklet contains 30 pages.

Я.	-	INSTRUCTIONS								
ATC	A.	Question paper format:								
GL	1.	The question paper consists of 4 parts (Biology, Chemistry, Physics, General Knowledge).								
EINVI	2.	Part-I contains 60 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which only one is correct.								
ЭМ ТН	3.	Part-II contains 60 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which only one is correct.								
VS FRO	4.	Part-III contains 60 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which only one is correct.								
UCTIO	5.	Part-IV contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which only one is correct.								
STR	В.	Marking Scheme:								
AWAIT IN:	6.	In Part-I (Total Marks: 60), for each question you will be awarded 1 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks if no bubble is darkened. If you darken bubble corresponding to the worng answer . 0.33 marks will be deducted .								
OKLET, /	7.	In Part-II (Total Marks: 60), for each question you will be awarded 1 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks if no bubble is darkened. If you darken bubble corresponding to the worng answer , 0.33 marks will be deducted .								
N THIS BC	8.	In Part-III (Total Marks: 60), for each question you will be awarded 1 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks if no bubble is darkened. If you darken bubble corresponding to the worng answer, 0.33 marks wll be deducted .								
SEALS OF	9.	In Part-IV (Total Marks: 20), for each question you will be awarded 1 marks if you darken ONLY the bubble corresponding to the correct answer and zero marks if no bubble is darkened. If you darken bubble corresponding to the worng answer, 0.33 marks wll be deducted .								
말	Nam	e (in Capitals):								
I Y										
BREA	Roll I	NO. : in figures:								
τoτ		: in words:								
o o	Cent	re of Examination (in capitals) :								
	Cand	idate's Signature :Invigilator's Signature								
	Fasci	mile signature stamp of								
	Cent	re Superintendent:								

PHYSICS

1. A car is circulating on a circular path of radius r. At some instant its velocity is v and rate of increase of speed is a. The resultant acceleration of the car will be

(A)
$$\sqrt{\frac{v^2}{a^2} + r^2}$$
 (B) $\sqrt{\frac{v^2}{r} + a}$ (C) $\sqrt{\frac{v^4}{r^2} + a^2}$ (D) $\left(\frac{v^2}{r} + a\right)$

2. Three identical particles are joined together by a thread as shown in figure. All the three particles are moving in a horizontal plane. If the velocity of the outermost particle is v₀, then the ratio of tensions in the three sections of the strings is

- (C) 7:11:6 (A) 3:5:7 (D) 3:5:6 (B) 3:4:5
- A rocket with a lift-off mass 3.5×10^4 kg is blasted upwards with an initial net acceleration of 10 3. m/s². Then, the initial thrust of the blast is

(B) 7.0×10^5 N (A) 3.5×10^5 N

- (C) 14.0×10^5 N (D) 17.5×10^5 N
- A steel ball strikes a steel plate at an angle θ with the vertical. If the coefficient of restitution is e, 4. the angle at which the rebound will take place is
 - (B) $\tan^{-1}\left[\frac{\tan\theta}{e}\right]$ (C) $e \tan\theta$ (A) θ
- Two vehicles of equal masses are moving with same speed v on two roads inclined at an angle 5. θ . They collide in elastically at the junction and, then move together. The speed of the combination is

(D) $\tan^{-1} \left| \frac{e}{\tan \theta} \right|$

A mass of 10 g moving horizontally with a velocity of 100 cm/s strikes a pendulum bob of mass 6. 10 g. Length of string is 50 cm. The two masses stick together. The maximum height reached by the system now is $(g = 10 \text{ m/s}^2)$

[1]

(A) $v\cos\theta$

coefficient of friction between the box and the floor is 0.25. The work done by force F on the block in displacing it by 2 m is

[6]			MEAITS_2	2018_PART TEST_2_AIIMS_01-12-2017
	(A) expand	(B) compress	(C) remain same	e (D) None of these
22.	A bar magnet is pla induction B. If it is rot of bar magnet)	aced in the position of ated through an angle 1	stable equilibrium 80°, then the work	n in a uniform magnetic field of t is (M = magnetic dipole moment
	(A) MB	(B) 2MB	(C) <u>MB</u> 2	(D) zero
23.	Two particles each of 2R. The rod is rotated centre. The ratio of momentum about the	f mass m and charge q a d at constant angular sp the magnitudes of the centre of rod is	are attached to the beed about a perpe magnetic momen	e ends of a light rigid rod of length endicular axis passing through its it of the system and its angular
	(A) q/2m	(B) q/m	(C) 2q/m	(D) q/πm
24.	Which one of the follo	wing is a correct statem	ient?	
	(A) Electric field is al	ways conservative		
	(B) Electric field due	to a varying magnetic fi	eld is conservative	
	(C) Electric field is of time varying mag	conservative due to elegentic field	ctrostatic charges	while non-conservative due to a
	(D) Electric field lines	s are always closed loop	S	
25.	A uniform but time-v directed into the plar point P at a distance	arying magnetic field B ne of the paper, as sho r from the centre of the o	(t) exists in a cyli wn. The magnituc circular region	ndrical region of radius a and is le of the induced electric field at
		$ \begin{array}{c} \times & \times & B(t) \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times &$	x x x	
	(A) is zero	(B) decreases as $\frac{1}{r}$	(C) increases as	s r (D) decreases as $\frac{1}{r^2}$
26.	A conducting rod AC directed into the pape	C of length 4ℓ is rotate er. AO = ℓ and OC = 3ℓ	ed about a point (. Then	O in a uniform magnetic field B
		× × ×	× ×	×
		××∽	× ×	×
		A(•	(
		× × ×	x x	x
		x x x	x x	×
r le i	IS • NEET • State Level PMT	Mentors Eduserv: Plot Patna-1, Ph. No. : 0	No136/137, Parus 612-3223681/2 7	Lok Complex, Boring Road Crossing, 544015993/6/7 7070999604/5

(A)
$$V_A - V_O = \frac{B\omega\ell^2}{2}$$
 (B) $V_O - V_C = \frac{7}{2}B\omega\ell^2$ (C) $V_A - V_C = 4B\omega\ell^2$ (D) $V_C - V_O = \frac{9}{2}B\omega\ell^2 T$

27. The network shown in the figure is a part of a complete circuit. If at a certain instant the current I is 5 A and decreasing at the rate of 10^3 A/s the V_B – V_A is

٢٥٦			MEATTS_2018_	_PARI 1ES1_2_AIIMS_01-12-2017
30.	In a certain circuit c current between t = 2	urrent changes with time ? to t = 4 s will	e according to $i = 2\sqrt{t}$.	Root mean square value of
	(A) 3 A	(B) 3√3 A	(C) $2\sqrt{3}$ A	(D) √3 A
31.	An AC source of ang	jular frequency ω is fed	across a resistor r and	a capacitor C in series. The
	current registered is	I. If now the frequence	cy of source is change	ed to $\frac{\omega}{3}$ (but maintaining the
	same voltage), the c resistance at the orig	urrent in the circuit is fou inal frequency ω	und to be halved. Calcu	ulate the ratio of reactance to
	(A) $\sqrt{\frac{3}{5}}$	(B) $\sqrt{\frac{2}{5}}$	(C) $\sqrt{\frac{1}{5}}$	(D) $\sqrt{\frac{4}{5}}$
32.	An L-C-R series circle and angular frequent the voltage by 60°. V average power dissip	uit with a resistance of 1 cy 300 rad/s. When only Vhen only the inductor is pated in original L-C-R ci	00 Ω is connected to y the capacitor is remo- s removed the current l rcuit is	an AC source of 200 V (rms) oved, the current lags behind eads the voltage by 60°. The
	(A) 50 W	(B) 100 W	(C) 200 W	(D) 400 W
33.	The sun delivers 10 ⁴ incident on a roof of o	W/m² of electromagneti dimensions (10 × 10)m²	ic flux to the earth's su will be	rface. The total power that is
	(A) 10 ⁴ W	(B) 10 ⁵ W	(C) 10 ⁶ W	(D) 10 ⁷ W
34.	The average electric NC^{-1} . Then the avera	field of electromagnetic age magnetic field in the	c waves in certain reg same region is of the c	ion of free space is 9 × 10 ⁻⁴ order of
	(A) 27 × 10 ⁻⁴ T	(B) 3 × 10 ⁻¹² T	(C) $\left(\frac{1}{3}\right) \times 10^{-12} \text{ T}$	(D) 3 × 10 ¹² T
35.	A coil having an indu	ictance of $\frac{1}{\pi}$ henry is co	onnected in series with	a resistance of 300 Ω . If 20
	V and a 200 Hz sou phase angle betweer	rce are impressed acros the voltage and the cur	ss the combination, th rent is	e value of the tangent of the
	(A) $\frac{5}{4}$	(B) $\frac{4}{5}$	(C) $\frac{3}{4}$	(D) $\frac{4}{3}$
36.	In an AC circuit, a angle between voltage	resistance of R ohm is ge and current be 45°, the	connected in series wi e value of inductive rea	ith an inductance L. If phase actance will be
	(A) R/4	(B) R/2	(C) R	
	(D) cannot be found	with the given data		
37.	An L-R circuit has R the circuit will be	=10 Ω and L = 2 H. If γ	120 V, 60 Hz AC volta	ge is applied, then current in
	(A) 0.32 A	(B) 0.16 A	(C) 0.48 a	(D) 0.80 A
38.	An emf of 15 V is a ratio of the currents a	pplied in a circuit coil contact time $t = \infty$ and $t = 1 s$	ontaining 5 H inductan is	ce and 10Ω resistance. The
	(A) $\frac{e^{1/2}}{e^{1/2}-1}$	(B) $\frac{e^2}{e^2-1}$	(C) 1 − e ^{−1}	(D) e ⁻¹

39. In the circuit shown what is the energy stored in the coil at steady state ?

40. Two particles x and y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular path of radius R_1 and R_2 respectively. The ratio of mass of X to that of Y is

Assertion & Reason

These questions consist of two statements, each printed as **Assertion** and **Reason**. While answering these question you are required to choose any one of the following four responses.

- (A) If both **Assertion** and **Reason** are true and the **Reason** is the correct explanation of **Assertion**.
- (B) If both Assertion and Reason are true but the Reason is not the correct explanation of Assertion.
- (C) If Assertion is true but Reason is false.
- (D) If both the **Assertion** and **Reason** are false.
- **41. Assertion** : Two concentric conducting rings of different radii are placed in space. The mutual inductance of both the rings is maximum if the rings are coplanar.
 - **Reason** : For two coaxial conducting rings of different radii, the magnitude of magnetic flux in one ring due to current in other ring is maximum when both rings are coplanar
- **42. Assertion** : In the figure, just after closing the switch the potential drop across inductor in maximum.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No.: 0612-3223681/2 | 7544015993/6/7 | 7070999604/5 [9]

- **Reason** : The rate of change of current just after closing the switch is maximum.
- **43. Assertion** : At resonance power factor of L-C-R series circuit is one.
 - **Reason** : At resonance $X_c = X_L$
- 44. Assertion : At frequency greater than resonance frequency circuit is inductive in nature. Reason : $X_{L} \propto \omega$
- **45. Assertion** : In a uniform magnetic field $B_0 \hat{k}$, if velocity of a charged particle is $v_0 \hat{i}$ at t = 0, then it can have the velocity $v_0 \hat{j}$ at some other instant.

Reason : In uniform magnetic field acceleration of a charged particle is always zero.

- **46. Assertion** : A charged particle moves perpendicular to a uniform magnetic field then its momentum remains constant.
 - **Reason** : Magnetic force acts perpendicular to the velocity of the particle.
- 47. Assertion : At neutral point, a compass needle may point out in any arbitrary direction
 - **Reason** : Magnetic field of earth is balanced by field due to magnet at the neutral point.
- 48. Assertion : The earth's magnetic field is due to iron present in its core.
- **Reason** : At a high temperature magnet loses its magnetic property of magnetism.
- **49. Assertion** : An object A is dropped from the top of an incline at t = 0, as shown. It will fall under gravity as indicated by the arrow. At the same time i.e., t = 0, another object B begins to slide down the frictionless incline.

The two objects during their motion to the ground level will be travelling at equal speeds.

[10]

EATTS 2018 DART TEST 2 ATTMS 01-12-2017

MEAL	5_2010_FART	LST_2_AIIMS_01-12-2017 [11]
50.	Assertion	: In projectile motion, the rate of change in magnitude of potential energy of a particle first decreases and then increases during motion.
	Reason	: In projectile motion, the rate of change in linear momentum of a particle remains constant during motion
51.	Assertion	: One end of a massless rod of length I is hinged so that it is free to rotate in a vertical plane about a horizontal axis. If a particle is attached to the other end of the rod, then the minimum speed at lower most position of the particle is $\sqrt{5 \text{ gl}}$ to complete the circular motion.
	Reason	: Work done by centripetal force on the particle is always zero.
52.	Assertion	: When water in a bucket is wiried fast overhead, the water does not fall out at the top of the circular path.
	Reason	: The centripetal force in this position on water is more than the weight of water.
53.	Assertion	: In head inelastic collision, the final momentum is less than the initial momentum.
	Reason	: For inelastic collision, $0 \le e < 1$. Hence, the magnitude of relative velocity of separation after collision is less than relative velocity of approach before collision.
54.	Assertion	: A projectile gets exploded at its highest point. All the pieces get only horizontal velocities. The centre of mass will always fall at a point which is farther than the point where the projectile would have fallen in unexploded condition.
	Reason	: The weight of the projectile is the external force for projectile.
55.	Assertion	: Angular momentum of sun and planet system about any point remains constant.
	Reason	: Two equal and opposite forces will act on them. Net torque of those two set of forces about any point is zero.
56.	Assertion	: Two identical spherical balls are released from two inclined plane. First is sufficiently rough and second is smooth. Both the balls will have same kinetic energy on reaching the bottom.
	Reason	: Linear velocity of second ball will be more.
57.	Assertion	: Moment of inertia about an axis passing through centre of mass is always minimum.
	Reason	: Theorem of parallel axis can be applied for 2-D as well as 3-D bodies.
58.	Assertion	: A sphere is placed in pure rolling condition over a rough inclined surface. Then, force of friction will act in downward direction.

[15]

[16]			MEAITS_2018_	PART TEST_2_AIIMS_01-12-2017	
	(A) 1/2 of the initial va	lue	(B) 1/4 of the initial va	alue	
	(C) 2 times of the initia	al value	(D) 4 time of the initial value		
79.	HI was heated in a sea decomposed. The equ	aled tube at 440°C till th uilibrium constant for di	he equilibrium was reac ssociation is :	hed. HI was found to be 22%	
	(A) 0.282	(B) 0.0796	(C) 0.0199	(D) 1.99	
80.	One mole of nitrogen	was mixed with 3 mole	s of hydrogen in a close	ed 3L vessel. 20% of nitrogen	
	is converted into NH ₃ . Then, K _C for the $\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightleftharpoons NH_3$ is:				
	(A) 0.36 L mol ⁻¹	(B) 0.46 L mol ⁻¹	(C) 0.5 mol ⁻¹ L	(D) 0.2 mol ⁻¹ L	
81.	1.1 mole of A is mix equilibrium is attaine equilibrium constant o	ed with 2.2 mole of E d $A + 2B \rightleftharpoons 2C + D$. At f the reaction is :	3 and the mixture is th t the equilibrium 0.2 r	nen kept in 1-L flask till the nole of C are formed. The	
	(A) 0.001	(B) 0.222	(C) 0.003	(D) 0.004	
82.	The equilibrium constance respectively. The reactively.	ant for the reaction Br_2 tion is :	$_{2}$ \rightleftharpoons 2Br at 500K and 7	00K are 1×10 ⁻¹⁰ and 1×10 ⁻⁵ ,	
	(A) Endothermic	(B) Exothermic	(C) Fast	(D) Slow	
83.	Which of the following	will have nearly equal	H^+ concentration ?		
	(i) 100 ml 0.1M HCl r	nixed with 50 ml water			
	(ii) 50 ml 0.1M H ₂ SO ₄	mixed with 50 ml wate	er		
	(iii) 50 ml 0.1M H ₂ SO ₄	mixed with 100 ml wat	ter		
	(iv) 50 ml 0.1M HCl m	ixed with 50 ml water			
	(A) i,ii	(B) ii,iii	(C) i,iii	(D) ii,iv	
84.	For an acid				
	$CH_3COOH + H_2O \rightleftharpoons C$	$H_3COO^- + H_3O^+; K_1;$	and for a base		
	$CH_3COO^- + H_2O \rightleftharpoons C$	H ₃ COOH+OH⁻ ; K ₂ Th	nen.		
	(A) K ₁ ·K ₂ =K _w		(B) $\log K_1 + \log K_2 = \log K_2$	K _w	
	(C) pK ₁ +pK ₂ =pK _w		(D) All are correct		
85.	K _a and K _b values of fo An aqueous solution o	rmic acid and ammoniu f ammonium formate is	um hydroxide are 2×10 [.] s :	⁻⁴ and 1.8×10^{-5} , respectively.	
	(A) Basic	(B) Acidic	(C) Neutral	(D) Cannot be predicted	
86.	The pH of a buffer CH_3COONa is 4.8. W	solution prepared by hat is the concentration	mixing 50 mL of 0.2M n of CH ₃ COONa ? pK _a o	VI CH_3COOH and 25 mI of of CH_3COOH is 4.8.	

MEAITS	2018_PART TEST_2_AIIMS	5_01-12-2017				[17]
	(A) 4.0	(B) 0.4	(C)	2.0	(D)	0.2
87.	True peroxide is :					
	(A) NO ₂	(B) MnO ₂	(C)	BaO ₂	(D)	SO ₂
88.	The correct order of in	creasing ionic characte	er is :			
	(A) $BeCl_2 > MgCl_2 > C$	$CaCl_2 > BaCl_2$	(B)	$MgCl_2 > CaCl_2 > E$	BeCl ₂	> SrCl ₂
	(C) $BeCl_2 < MgCl_2 < C$	$CaCl_2 < BaCl_2$	(D)	$BeCl_2 < CaCl_2 < M$	lgCl ₂	< BaCl ₂
89.	In borax bead test, wh	ich component of the b	ead	reacts with basic ra	dical	to form metaborate?
	(A) Na ₂ BO ₃	(B) B ₂ O ₃	(C)	NaBO ₂	(D)	Na ₂ B ₄ O ₇
90.	H_3BO_3 and HBO_2 do not	ot differ in				
	(A) Oxidation number		(B)	Reacting with wate	er	
	(C) Melting point		(D)	Structure.		
91.	$SiCl_4 + H_2O \longrightarrow X +$	HCI				
	$X \xrightarrow{1000^{\circ}C} Y$					
	X and Y in the above reactions are					
	(A) SiO_2 and Si	(B) $H_4SiO_4+SiO_2$	(C)	Si and SiO ₂	(D)	H ₄ SiO ₄ +Si
92.	In the preparation of C	D_2 from KCIO ₃ , MnO ₂ ac	ts as			
	(A) An activator	(B) A catalyst	(C)	An oxidizing agen	t (D)	A retarder
93.	The reducting charact	er of hydrides of group	IV el	ements is :		
	(A) Maximum for CH_4	and minimum for $PbH_{\!_4}$	(B)	Maximum for CH_4	and r	minimum for SnH_4
	(C) Maximum for PbH	$_{_4}$ and minimum for SiH $_{_4}$	(D)	Maximum for PbH	₄and	minimum for CH_4
94.	The oxoacid that conta	ains P – O – P bond is	:			
	(A) Hyphophosphorou	is acid	(B)	Pyrophosphoric ac	cid	
	(C) Peroxyphosphoric	acid	(D)	Orthophosphoric a	acid	
95.	Which of the following	cannot be used as nitr	oger	ous fertilizer?		
	(A) CaNCN	(B) NH_4NO_3	(C)	HNO ₃	(D)	NH ₂ CONH ₂
96.	Arrange the following wrong statement about	'A' is produced by the at A is :	e oxio	dation of HCN by C) ₂ usi	ng silver catalyst. Then
	(A) $NO_3^- > NO_2^+ > NO_2^+$	2	(B)	$NO_{3}^{-} > NO_{2}^{-} > NO_{2}^{-}$	2	
	(C) $NO_2^+ > NO_2^- > NO_2^-$	2	(D)	$NO_{2}^{-} > NO_{3}^{-} > NO_{3}$	+ 2	

[18]			MEAI	rs_2018_PART TEST_2_AIIMS_01-12-2017
97.	Nitrogen compound wrong statement abo	'A' is produced by th out A is :	ne oxidation of HC	CN by O_2 using silver catalyst. Then
	(A) It is linear molecu	ıle	(B) It is pseud	ohalogen
	(C) It undergoes disp	proportion in basic sol	ution	
	(D) It cannot be prepa	ared by the action of	Cu²⁺ and CN⁻	
98.	The geometry of H_2S	and its dipolemomen	its are	
	(A) Angular and non-	zero	(B) Angular a	nd zero
	(C) Linear and zero		(D) Linear and	non-zero
99.	In which of the follow	ing pairs the later will	have more boiling	point than the former ?
	(A) NH ₃ , PH ₃	(B) H ₂ O, H ₂ S	(C) HF, HCI	(D) H ₂ Se, H ₂ Te
100.	Dioxygen is used in r	ockets		
	(A) As a reductant	(B) As a fuel	(C) As an oxid	lant (D) As a bleaching agent
	. ,	Assertio	on & Reason	
	These questions cor	sist of two stateme	nts, each printed	as Assertion and Reason . While
	answering these ques	stion you are required	to choose any on	e of the following four responses.
	(A) If both Assertion.	on and Reason are	true and the Re	eason is the correct explanation of
	(B) If both Assertion Assertion.	on and Reason are	true but the Reas	on is not the correct explanation of
	(C) If Assertion is t	rue but Reason is fal	lse.	
	(D) If both the Asser	tion and Reason are	false.	
101.	Assertion : Cyclo	propane show bromin	ie water test	to high angle of strain
102.	Assertion : Propar	ne have '3' conformat	ional isomers	
	Reason : Propar	ne have '2' important	conformer	
103.	Assertion : Ethane	e have '3' conformatio	onal isomers	
	Reason : Ethane	e have '2' important co	onformer	
			H	
104.	Assertion : Me –	$\langle \bigcirc \rightarrow \langle \bigcirc \rangle$	$-\langle \bigcirc \rangle$ -Me is	Trans-isomer and optically inactive
		OH Br	Me	
	Reason : The ab	ove compound have	centre of inversion	and the structure of rigidity
	CH I	3		
105.	Assertion :	\succ_{C} is optically a	active and also sho	ow G.I.
	\sim			

[19]

[20]			MEAITS_2018_PART TEST_2_AIIMS_01-12-2017
115.	Assertion	:	In the extraction of Ag, Complex Na[Ag(CN) ₂] is reacted with zinc.
	Reason	:	Zn is a d-block metal
116.	Assertion	:	Chalcopyrites is concentrated by froth floation method
	Reason	:	CuFeS ₂ is the chief ore of copper
117.	Assertion	:	Fluorine can be produced electrolytically
	Reason	:	Water is oxidized at a much higher potential than fluorine and any fluorine produced will rapidly react with water.
118.	Assertion	:	CI – O bond length decreases from CIO ⁻ to CIO ₄ ⁻ .
	Reason	:	Percentage of 's' character in hybrid orbitals decreases from CI – O ⁻ to CIO_4^-
119.	Assertion	:	The bond angle in PBr_3 is greater than PH_3 but bond angle in NBr_3 is less than that of NH_3 .
	Reason	:	Size of Br is less than H
120.	Assertion	:	The dipole moment of NF_3 is less than NH_3 .
	Reason	:	The presence of lone pair of electrons on nitrogen atom shows an additive contribution in dipole moment of NH_3 whereas it shows negative contribution towards dipole moment of NF_3 .

MEAITS	_2018_PART TEST_2_AIIMS_	_01-12-2017		[21]
		BIOL	OGY	
121.	Study the experiment s	shown below.		
		Stands Beaker	Thistle funnel Sugar solution Y Semipermeable membrane Pure water	
	After a few davs, which	n of the following will ha	ve occurred ?	
	(A) A rise in level X ar	nd Y.		
	(B) A drop in level X a	ind level Y.		
	(C) A rise in level X ar	nd a drop in level Y.		
	(D) A drop in level X a	nd a rise in level Y.		
122.	If a cell A with D.P.D. and 4, 10 and 5 and 7	4 bars is connected to and 3 bars, the flow of	cell B, C, D whose O.I water will be	P. and T.P are respectively 4
	(A) A and D to B and	С	(B) A to B, C and D	
	(C) B to A, C and D		(D) C to A, B and D	
123.	Study the following t mesophyll cells namely	able showing the cor / p, q, r.	mponents of water p	otential in closely arranged
	Cell	Osmotic potential		Pressure potential
		(MPa)		(MPa)
	р	-0.21		0.05
	q	-0.22		0.02
	r	-0.23		0.05
	Identify two of the follo	wing which show correct	ct direction of water mo	ovement between two cells.
	(a) p→q	(b) $q \longrightarrow r$	(c) r—→p	(d) r → q
	The correct pair is			
	(A) a, b	(B) b, c	(C) a, d	(D) b, d
124.	Match the column-I wit	h column-ll		
	Column-I	Column-II		

- MEAITS_2018_PART TEST_2_AIIMS_01-12-2017 **[23]** 129. The given figure shows the fate of glucose during aerobic and anaerobic respiration. Identify the end products that are formed at states indicated as A, B, C and D. Identify the correct option from those given below. Glucose Pyruvic acid Presence of Oxygen Absence of Oxygen Krebs'Cycle Fermentation ٠ B Yeast ÷ Lactic acid D (A) A = ETS, B = pyruvic acid, C = ethyl alcohol and carbon dioxide, D = lactic acid. (B) A = glycolysis, B = carbon dioxide and water, C = bacteria, D = ethyl alcohol and carbon dioxide. (C) A = pyruvic acid. B = carbon dioxide and water, C = ethyl alcohol and lactic acid. D = fungi. (D) A = ETS, B = ethyl alcohol and carbon dioxide, C = lactic acid, D = carbon dioxide and water. 130. How many ATP will be produced during the production of 1 molecule of acetyl CoA from 1 molecule of pyruvic acid? (C) 8 ATP (D) 38 ATP (A) 3 ATP (B) 5 ATP 131. Which of the following substances is not an essential component of the tricarboxylic acid cycle ? (A) FAD (B) Succinyl CoA (C) NADP (D) Citric acid 132. Match the growth regulators in column-I with the processes in column-II and choose the correct combination. Column-II Column-I (a) Auxin (i) Colouring test in lemon (b) Gibberellin (ii) Cell division test in plants
 - (c) Cytokinin
 - (d) Ethylene
 - (A) (a)- (iii), (b)-(iv), (c)- (ii), (d)-(i)
 - (C) (a)- (ii), (b)-(i), (c)- (iv), (d)-(iii)
- 133. Etiolation in plants is caused when
 - (A) they have mineral deficiency.
 - (C) they are grown in intense light.

- (iii) Avena curvature test
- (iv) Dwarf corn test
- (B) (a)- (i), (b)-(iv), (c)- (ii), (d)-(iii)
- (D) (a)- (ii), (b)-(i), (c)- (iv), (d)-(iii)
- (B) they are grown in dark.
- (D) they are grown in blue light.

[24]					MEAITS_2	018_PART TEST	_2_AIIMS_01-12-2017
134.	Ма	tch the following c	olumns and choose	the correct	ct option.		
		Column I			Column II		
	1.	Coleorhiza		I.	Grapes		
	2.	Food storing tiss	ue	II.	Mango		
	3.	Parthenocarpic f	ruit	III.	Maize		
	4.	Single seeded fr	uit developing	IV.	Radicle		
		from monocarpe	llary superior Ovary				
	5.	Membranous se	ed coat	V.	Endosperm		
		1	2	3		4	5
	(A)	III	I	IV		II	V
	(B)	IV	II	V		I	III
	(C)	V	I	111		IV	II
	(D)	IV	V	I		II	III
135.	Foi	⁻ artificial hybridiza	tion experiment in b	isexual flo	ower, which of	the sequence	es is correct ?
	(A)	Bagging →	Emasculation \longrightarrow	Cross Po	ollination ——	→ Rebagging	g
	(B)	Emasculation —	\longrightarrow Bagging \longrightarrow	Cross Pol	llination ——	Rebagging	
	(C)	Cross pollination	\longrightarrow Bagging —	\rightarrow Emas	sculation	→ Rebagging	
	(D)	Salf-pollination -	\longrightarrow Bagging —	Emascu	$Iation \longrightarrow F$	Rebagging	
136.	Wr	ich of the following	g is false ?				
	(1)	Endosperm form	ation starts prior to	division of	f zygote.		
	(2)	Angiospermic er	dosperm is mostly 3	3N while g	ymnospermic	one is N.	
	(3)	The most comm	on type of endosper	m is nucle	ear.		
	(4)	Coconut has bot	h liquid nuclear (mu	Itinucleate	e) and cellular	endosperm.	
	(5)	Milky water of gr	een tender coconut	is liquid fe	emale gameto	phyte.	
	(A)	1 and 2 only	(B) 3 only	(C)	5 only	(D) 2 c	only
137.	Ma	tch the following a	nd choose the corre	ect option ·	_		
		Column-A			Column-B		
	1.	ABO blood grou	os	p.	Dihybrid cros	S	
	2.	Law of segregati	on	q.	Monohybrid	cross	
	3.	Law of Independ	ent assortment	r.	Base pairs s	ubstitution	
	4.	Gene mutation		S.	Multiple alleli	sm	
	(A)	1 –q, 2 – p, 3 – s	s, 4 – r	(B)	1 –s, 2 – p, 3	8 – q, 4 – r,	
	(C)	1 –s, 2 – q, 3 – p	o, 4 − r,	(D)	1 –q, 2 – r, 3	− s, 4 − p,	
138.	Po	sition of a gene on	chromosome is call	led			
	(A)	locus	(B) factor	(C)	cistron	(D) nu	cleosome

MEAITS	5_2018_PART TEST_2_AIIMS_01-12-2017 [25]
139.	Wobble hypothesis establishes
	(A) Peptide chain formation (B) Initiation of peptide chain
	(C) Termination of peptide chain (D) Economy in tRNA molecules.
140.	Methyl guanosine triphosphate is added at 5' end of hn RNA in a process of
	(A) Tailing (B) Splicing (C) Capping (D) None of these
141.	Bones of pelvic girdle forms a cavity in which head of the femur is fitted are
	(A) Ilium only (B) Ilium and ischinum
	(C) Ilium, ischium, and pubis (D) Ischium and pubis
142.	Sutural joints are present between
	(A) Thumb and metatarsal (B) Humerus and radio-ulna
	(C) Parietals of skull (D) Glenoid cavity and pectoral girdle
143.	Myoglobin occurs more in
	(A) White muscle fibers (B) Red muscle fibers
	(C) Involuntary muscles (D) All the above
144.	EDTA injected into muscles combines with Ca ²⁺ and
	(A) Stops contraction (B) Causes contraction
	(C) Slows down contraction (D) None of the above
145.	In the presence of Ca ⁻⁺ channel blockers, which of the following will be true ?
	(A) Neurotransmitter is released but the Na channel of post-synaptic neuron will not open.
	(B) Neurotransmitter is not released but the Na channel of post-synaptic neuron will open up.
	(C) Neurotransmitter is released but the K channel of post-synaptic neuron opens up. (D) Neither neurotransmitter is released per the Ne^+ shapped of post-synaptic neuron open up.
1/6	(D) Neither neuronansmiller is released for the Na Channel of post-synaptic neuron open up. Highly vascular and closely investing protective cost around brain is known as
140.	(A) Arachnoid (B) Pia mater (C) Dura mater (D) Sub-arachnoid space
147	Which part of brain is involved in organizing the behavior of an organism related to its survival?
147.	(A) Amyodala lobe (B) Cerebral cortex (C) Corpus callosum (D) Hypothalamus
148.	Which part of the limbic system converts information from short-term to long-term memory,
	essential in learning ?
140	(A) Amygdala (B) Basal ganglia (C) Hippocampus (D) Hypothalamus
149.	(A) Superior colliquities (B) Inferior colliquities (C) Bono
150	(A) Superior conicult (B) Interior conicult (C) Poins (D) Medulia obiorigata Basal ganglion is a collection of subcortical nuclei in the forebrain, at the base of the cortex.
150.	primary function of the basal ganglia is
	(A) Sensory integration (B) Short term memory
	(C) Planning stereotyped movements (D) Neuroendocrine control
151.	Which part of the brain is like a defense castle controlling moods and plays an important role in emotional behavior such as aggression and remembering fear ?

H after							
H after							
tion are ormone nausea,							
tion are ormone nausea,							
tion are ormone nausea,							
tion are ormone nausea,							
tion are ormone nausea,							
tion are ormone nausea,							
ormone nausea,							
ormone nausea,							
ormone nausea,							
nausea,							
nausea,							
nausea,							
(B) High blood sugar, obesity, wasting of limb muscles, fall in plasma K ⁺ , high blood Na ⁺ , rise in blood volume, and high blood pressure.							
n.							
c-GMP							
ity, and							
ie							
n it <u></u> ne							

Assertion & Reason

These questions consist of two statements, each printed as **Assertion** and **Reason**. While answering these questions you are required to choose any one of the following four responses.

- (A) If both Assertion and Reason are true and the Reason is the correct explanation of Assertion.
- (B) If both Assertion and Reason are true but the Reason is not the correct explanation of Assertion.
- (C) If Assertion is true but Reason is false.
- (D) If both the Assertion and Reason are false.
- 161. Assertion : Osmotic potential is always positive in a turgid cell.
 Reason : Osmotic pressure becomes equal to wall pressure in a flaccid cell.
- **162. Assertion** : Loading of sucrose in to sieve tube elements is an active process.
- **Reason** : During opening of stomata K^+ comes inside the subsidiary cell.
- **163.** Assertion : Na–EDTA Act as chelating agent.
- **Reason** : Symptoms of mobile elements first appear in mature leaves.
- **164. Assertion** : PS-II participates during cyclic-ETS.
- **Reason** : PS-II participates during cyclic and non-cyclic ETS.
- **165. Assertion** : R.Q value is less than one is the compound rich in oxygen.
- **Reason** : Fatty acid requires less O₂ for their breakdown.
- **166.** Assertion : Auxin promotes apical dominance.
- **Reason** : Cytokinin promotes lateral branch formation.
- **167. Assertion** : Aleurone layer is triploid structure.
- **Reason** : Aleurone layer is a part of endosperm.
- **168.** Assertion : Cleistogamous flower promotes allogamy.
- **Reason** : Self-In compability prevents allogamy.
- **169. Assertion** : Atavism is exception to blending inheritance.
- **Reason** : Sickle cell anaemia is controlled by sex-chromosomal gene.
- **170. Assertion** : The process of capping occurs in prokaryotes.
- **Reason** : Genetic code is ambiguous generally.
- **171. Assertion** : Diabetes insipidus is marked by excessive urination and too much thirst for water.
- **Reason** : Anti-diuretic hormone (ADH) is released by the posterior lobe of pituitary gland.
- **172.** Assertion : Thyroxine shows calorigenic effect.
- **Reason** : Thyroxine increases catabolism, produces energy and increases body temperature
- **173. Assertion** : Vasopresin is also called as antidiuretic hormone.
- **Reason** : Vasopression reduces the loss of water in urine by increasing water reabsorption in nephrons.

174. Assertion : Adrenal cortex is called the gland for "fight, fright, and flight."

Reason : The hormones of it adrenaline and nor-adrenaline help the body to combat against stress and emergency conditions.

[28]			MEAITS_	2018_PART TEST_2_AIIMS_01-12-2017						
175.	Assertion	· The sharpest vision is in fovea centralis								
	Reason	: The relationship of receptor to bipolar cells to ganglion cells is 1 : 1 :1 within for centralis.								
176.	Assertion	: Presence of myelin sheath i	ncreases the rate of c	onduction of nerve impulse.						
	Reason	: lonic channels are absent depolarization occurs only a conduction.	in the area covere t the nodes or Ranvie	ed by myelin sheath. Therefore, er, resulting in saltatory or jumping						
177.	Assertion	: The postganglionic nerve acetylcholine as the neurotra	e fiber of parasym ansmitter.	npathetic nervous system has						
	Reason	: Sympathetic nervous system inhibits the intestinal peristalsis while parasympathe stimulates peristalsis.								
178.	Assertion	: Corpus callosum is present	in the space between	the pia and arachnoid maters.						
	Reason	: It serves to maintain a const	ant pressure inside the cranium.							
179.	Assertion	: The auditory ossicles help in	n hearing.							
	Reason	: Auditory ossicles maintain the balance of air pressure between two sides of th eardrum.								
180.	Assertion	: Blind spot on the retina of th	e eye is devoid of the	ability for vision.						
	Reason	: The photoreceptor cone cell	Is and rod cells are absent at the blind spot.							
GENERAL KNOWLEDGE										
181.	181. P is the brother of D. X is the sister of P. A is the brother of F. F is the daughter of D. M is the father of X. Who is the uncle of A?									
	(A) X	(B) P	(C) F	(D) M						
182. Which one of the following Venn Rhombus, Quadrilaterals, Polygons?			diagrams best ill	ustrates the three classes:						
	(A)		(B)							
	(C)		(D)							
183.	183. If the first and third letters in the word NECESSARY were interchanged, also the fourth and the sixth letters, and the seventh and the ninth letters which of the following would be the seventh letter from the left?									
	(A) A	(B) Y	(C) R	(D) E						
ـــــــــــــــــــــــــــــــــــــ		×								

AIIMS • NEET • State Level PMT

[30]						MEAITS_2	2018_P	PART TEST_2_AIIMS_01-12-201	7	
	(B)	 Latitudes 8.40 N and 37.60 N and longitudes 69.70 E and 99.250 E Latitudes 9.40 N and 38.60 N and longitudes 68.70 E and 97.250 E 								
	(C)									
	(D)	None of these								
192.	Whi	Which of the following rivers does not originate from the Himalayas?								
	(A)	The Yamuna	(B)	The Gandak	(C)	The Narmada	(D)	The Kosi		
193.	193. When was the wild life protection act implemented in India?									
	(A)	1970	(B)	1971	(C)	1972	(D)	1973		
194.	Whe	en did the first t	rain s	steam off in In	ıdia?)				
	(A)	1850	(B)	1851	(C)	1852	(D)	1853		
195.	Whi	ch was the first	port	to be develop	ed a	ifter independe	nce?			
	(A)	Marmagao			(B) Jawaharlal Nehru Port					
	(C)	Kandla			(D)	Kochi				
196.	Whe	en was Gandhi	– Irwi	in Pact signed	?					
	(A)	5 March 1931 25 March 1931			(B) 15 March 1931 (D) 5 March 1932					
	(C)									
197.	Bon	Bombay was first under whose control?								
	(A)	Portuguese	(B)	English	(C)	French	(D)	Dutch		
198.	Who	said 'Printing i	is the	e ultimate gift	of G	od and the grea	atest	one'?		
	(A)	E.V. Ramaswamy Maicker Martin Luther			(B) Bal Gangadhar Tilak					
	(C)				(D) Erasmus					
199.	Who	o is the Chairma	an of	Nitti Ayog.						
	(A)	Arun Jately		(B) Narendra Modi						
	(C) Shushma Swraj			(D) Ravi Shankar Prasad						
200.)0. Who is Miss World of 2017									
	(A)	Christna Gomej) Wilkins Tayler			(B) Nupur Sharma					
	(C)				(D) Manushi Chhilar					

