SOLUTIONS

 WEEKLY TEST-1

 WEEKLY TEST-1 GZRS-1902 (JEE MAIN PATTERN) Test Date: 03-12-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. At equilibrium, let tension in each spring be T. Then

$$
2 \mathrm{~T} \cos 60^{\circ}=\mathrm{Mg}
$$

$$
\mathrm{T}=\mathrm{Mg}
$$

When right spring breaks, the net force on the block is T.
$\therefore \quad a=\frac{T}{M}=10 \mathrm{~m} / \mathrm{s}^{2}$
\therefore (A)
2. (B)

Mathod (I)

After 3 sec.
$V_{y}=u_{y}+g t=-30 \mathrm{~m} / \mathrm{s}$
and $\mathrm{V}_{\mathrm{x}}=10 \mathrm{~m} / \mathrm{s} \quad \therefore \mathrm{V}^{2}=\mathrm{V}_{\mathrm{x}}{ }^{2}+\mathrm{V}_{\mathrm{y}}{ }^{2}$

$$
\Rightarrow \quad V=10 \sqrt{10} \mathrm{~m} / \mathrm{s}
$$

Now, $\tan \alpha=\frac{V_{x}}{V_{y}}=\frac{1}{3} \quad \Rightarrow \sin \alpha=\frac{1}{\sqrt{10}}$
Radius of curvature $r=\frac{\mathrm{V}_{\perp}^{2}}{\mathrm{~g} \sin \alpha}$

$$
r=100 \sqrt{10} \mathrm{~m}
$$

3. $\mathrm{F}-\mathrm{F} \cos \phi=\mathrm{MA}$

$\mathrm{A}=\frac{\mathrm{F}-\mathrm{F} \cos \phi}{\mathrm{M}}$
\therefore (B)
4. (A)
$2 \mathrm{~T} \sin \theta=\mathrm{W}$

$\mathrm{T}=\frac{\mathrm{W}}{2} \operatorname{cosec} \theta$
5. (B)

For equilibrium of 5 kg block
$N \cos 37^{\circ}=50$
$\Rightarrow \mathrm{N}=50 \times \frac{5}{4}=62.5 \mathrm{~N}$
For equilibrium of 10 kg wedge
$N \sin 37^{\circ}=F$
$\Rightarrow 62.5 \times \frac{3}{5}=F$

$\Rightarrow \mathrm{F}=37.5 \mathrm{~N}$
6. (C)

The acceleration vector shall change the component of velocity $u_{\|}$along the acceleration vector.
$r=\frac{v^{2}}{a_{n}}$
Radius of curvature $r_{\text {min }}$ means v is minimum and a_{n} is maximum. This is at point P when component of velocity parallel to acceleration vector becomes zero, that is $\mathrm{u}_{\|}=0$.

$\therefore \quad R=\frac{u_{\perp}^{2}}{a}=\frac{4^{2}}{2}=8$ meter.
7. (B)

For the angle ' θ ' normal reaction between A \& B becomes zero, they ready to seprate. So, solve ' θ ' for $N_{A B}=0$
8. (B)

The resultant of \vec{a}, \vec{b} and \vec{c} is of magnitude $\frac{x}{\sqrt{2}}+x+\frac{x}{\sqrt{2}}$ whcih is equal to the resultant of \vec{d} and $\overrightarrow{\mathrm{e}}$.

So,

$$
\begin{aligned}
& \sqrt{2} x+x=\sqrt{2} y \\
\Rightarrow & y=\left(1+\frac{1}{\sqrt{2}} x\right) \\
\Rightarrow & y=\left(1+\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

so,

$$
k=2
$$

9. (C)

$$
R=\frac{u^{2}}{g} \sin 2 \theta=\frac{u^{2}}{g}
$$

Velocity of take off at P or

$$
\mathrm{u}=\sqrt{\mathrm{Rg}}=\sqrt{90 \times 10}=30 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& v=\sqrt{u^{2}+2 g \sin \theta S} \\
& =\sqrt{(30)^{2}+2 \times 10 \times \frac{1}{\sqrt{2}} \times 80 \sqrt{2}}=50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { [} v \rightarrow \text { velocity at point } O \text {] }
$$

10. (A)

FBD of ' A ' and ' B '

As, froces and mass all are in ration $2: 1$ for blck ' A ' and ' B '. So, their acceleration will be equal From contain realatio

$$
\begin{aligned}
& a^{\prime}+a^{\prime \prime}=a \\
& a^{\prime}+2 a^{\prime}=a \\
& \Rightarrow a^{\prime}=1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

11. (C)

Let the block moves up with acceleration of ' a ' $\mathrm{m} / \mathrm{s}^{2}$, then as the person is moving up will acceleration $\frac{g}{6}$ relative to string. Acceleration of person in ground frame will be
$\vec{a}_{\mathrm{pg}}=\overrightarrow{\mathrm{a}}_{\mathrm{ps}}+\overrightarrow{\mathrm{a}}_{\mathrm{sq}}$
$\Rightarrow \mathrm{a}_{\mathrm{pg}}=\left(\frac{-\mathrm{g}}{6}+\mathrm{a}\right) \downarrow$
So, $m g-T=m\left(a-\frac{g}{6}\right)$
and, for block
$\mathrm{T}-\frac{\mathrm{mg}}{2}=\frac{\mathrm{m}}{2} \mathrm{a}$
(i) + (ii)
$\frac{\mathrm{mg}}{2}=\frac{3 \mathrm{ma}}{2}-\frac{\mathrm{mg}}{6}$
$\Rightarrow \mathrm{mg}\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{3 \mathrm{ma}}{2} \Rightarrow \mathrm{a}=\frac{4 \mathrm{~g}}{9}$
12. (A)
$T=\frac{4 m_{1} m_{2} m_{3} g}{4 m_{1} m_{2}+m_{2} m_{3}+m_{1} m_{3}}$
13. (B)
$\mathrm{v}_{\mathrm{B}} \cos 30^{\circ}=\mathrm{v}_{\mathrm{A}} \cos 60^{\circ} ; \quad \mathrm{v}_{\mathrm{B}} \frac{\sqrt{3}}{2}=\frac{3}{2} ; \quad \mathrm{v}_{\mathrm{B}}=\sqrt{3} \mathrm{~m} / \mathrm{s}$
14. (C)
$\mathrm{T}_{1} \cos 30^{\circ}=\mathrm{T}_{2} \cos 30^{\circ}$
$\Rightarrow \mathrm{T}_{1}=\mathrm{T}_{2}$
$\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \sin 30^{\circ}=\mathrm{mg}$
$\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{mg}$
$T \sin \theta=m g+T_{1} \sin 30^{\circ}$
$T \sin \theta=m g+\frac{m g}{2}$

$\mathrm{T} \cos \theta=\mathrm{T}_{1} \cos 30^{\circ}=\mathrm{mg} \times \frac{\sqrt{3}}{2}$
dividing (i) and (ii)
$\tan \theta=\frac{3 \mathrm{mg} / 2}{\sqrt{3} \mathrm{mg} / 2}=\sqrt{3} \Rightarrow \theta=60^{\circ}$
15. (B)
16. (D)
17. (C)
t is the time to reach ground.
$h=\frac{1}{2}$ at $^{2} ;\left(1-\frac{9}{25}\right) h=\frac{1}{2} a(t-1)^{2}$

$$
\left(1-\frac{9}{25}\right)=\frac{(\mathrm{t}-1)^{2}}{\mathrm{t}^{2}} ; \frac{16}{25}=\frac{(\mathrm{t}-1)^{2}}{\mathrm{t}^{2}}
$$

or $\frac{4}{5}=\frac{t-1}{t} \quad \therefore \quad t=5 \mathrm{sec}$
$h=\frac{1}{2} \times 9.8 \times 5^{2}=122.5 \mathrm{~m}$
\therefore (C)
18. (A)

This is the situation similar to elastic collision of ball impinging on floor and bouncing back.
19. (A)
20. (C)

Given equation is $\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$
We know that $\left[\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^{2}}\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right], \quad \mathrm{P}=$ pressure.
$\left[\frac{\mathrm{a}}{\mathrm{V}^{2}}\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
$\mathrm{a}=\left[\mathrm{L}^{3}\right]^{2}\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\left[\mathrm{L}^{6}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\left[\because \mathrm{V} \equiv\left[\mathrm{L}^{3}\right]\right]$
21. (B)

Value of 1 main scale division $=$ a unit
Now $(\mathrm{n}+1)$ vernier scale division $=\mathrm{n}$ main scale divisions $=$ na units.
Therefore, value of 1 vernier scale division $=\frac{n a}{(n+1)}$ units.
Vernier constant = value of 1 main scale division - value of 1 vernier scale division

$$
=a-\frac{n a}{n+1}=a\left(1-\frac{n}{n+1}\right)=\frac{a}{(n+1)} \text { units. }
$$

22. (D)

From f.b.d.
$\mu=\frac{8 \sqrt{3}}{40} \simeq 0.35$

23. (C)

Use homogenity of dimension and use
$\mu \rightarrow$ Dimension less quantity
$\lambda \rightarrow$ meter
24. (C)
$v \frac{d v}{d x}=2 x+1$
$v d v=(2 x+1) d x$
$\int_{0}^{v} v d v=\int_{0}^{x}(2 x+1) d x \Rightarrow \frac{v^{2}}{2}=x^{2}+x$
25. (C)

The displacement of the body during the time t as it reaches the point of projection again

$$
\Rightarrow \mathrm{S}=0 \quad \Rightarrow \mathrm{v}_{0} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}=0 \quad \Rightarrow \mathrm{t}=\frac{2 \mathrm{v}_{0}}{\mathrm{~g}}
$$

During the same time t, the body moves in absence of gravity through a distance
$D^{\prime}=v_{0} t$, because in absence of gravity $g=0$
$\Rightarrow \mathrm{D}^{\prime}=\mathrm{v}_{0}\left(\frac{2 \mathrm{v}_{0}}{\mathrm{~g}}\right)=\frac{2 \mathrm{v}_{0}^{2}}{\mathrm{~g}}$
In presence of gravity the total distance covered is

$$
\begin{equation*}
=\mathrm{D}=2 \mathrm{H}=2 \frac{\mathrm{v}_{0}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{v}_{0}^{2}}{\mathrm{~g}} \tag{ii}
\end{equation*}
$$

(i) \div (ii) $\Rightarrow \mathrm{D}^{\prime}=2 \mathrm{D}$

Hence (C)
26. (C)

Time of travel of each stone $=t$
Distance travelled by each stone $=\frac{h}{2}$
For stone $A, \frac{h}{2}=\frac{1}{2} \mathrm{gt}^{2}$ i.e., $\mathrm{t}=\sqrt{\frac{\mathrm{h}}{\mathrm{g}}}$
For stone $B, \frac{h}{2}=u t-\frac{1}{2} \mathrm{gt}^{2}=\mathrm{u} \sqrt{\frac{\mathrm{h}}{\mathrm{g}}}-\frac{1}{2} \mathrm{~g}\left(\frac{\mathrm{~h}}{\mathrm{~g}}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{h}}{2}=\mathrm{u} \sqrt{\frac{\mathrm{~h}}{\mathrm{~g}}}-\frac{\mathrm{h}}{2} \Rightarrow \mathrm{u} \sqrt{\frac{\mathrm{~h}}{\mathrm{~g}}}=\mathrm{h} \\
& \therefore \quad \mathrm{u}=\mathrm{h} \sqrt{\frac{\mathrm{~g}}{\mathrm{~h}}}=\sqrt{\mathrm{gh}}
\end{aligned}
$$

The correct option is (C)
27. (D)

The free body daigram of hoop is
\therefore The normal reaction $N=\sqrt{m^{2} g^{2}+\frac{m^{2} v_{0}{ }^{4}}{r^{2}}}$
\therefore Frictional force $=\mu_{k} N=\mu_{k} \sqrt{m^{2} g^{2}+\frac{m^{2} v_{0}{ }^{4}}{r^{2}}}$

\therefore dangential acceleration $=\frac{\mu_{k} N}{m}=\mu_{k} \sqrt{g^{2}+\frac{v_{0}{ }^{4}}{r^{2}}}$
28. (B)

$$
\begin{aligned}
& k x=m \omega^{2} \ell+m \omega^{2} x \\
& \left(\mathrm{k}-\mathrm{m} \omega^{2}\right) \mathrm{x}=\mathrm{m} \omega^{2} \ell \\
& x=\frac{\mathrm{m} \omega^{2} \ell}{\mathrm{k}-\mathrm{m} \omega^{2}}
\end{aligned}
$$

29. (A)

For a force of 100 N on 10 kg block, relative motion will take place.
\therefore The frictional force between 10 kg block and 40 kg block,

$$
\mathrm{f}=\mu \mathrm{mg}=0.4 \times 10 \times 9.8 \mathrm{~N}
$$

The acceleration of the slab of 40 kg is

$$
\mathrm{a}=\frac{0.4 \times 10 \times 9.8}{40}=0.98 \mathrm{~m} / \mathrm{s}^{2}
$$

30. (D)

Let retardation of body is a and air resistance is f

$$
\begin{aligned}
& v=u+a t \\
& 0=40-3 a \\
& a=\frac{40}{3} \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{ma}=\mathrm{mg}+\mathrm{f}
\end{aligned}
$$

$$
\mathrm{f}=m a-m g=1.5\left(\frac{40}{3}-10\right)=5 \mathrm{~N}
$$

CHEMISTRY

31. (C)
Acid
$\mathrm{H}_{2} \mathrm{~A}$
Salt
$\mathrm{Ag}_{2} \mathrm{~A}$
$\frac{1}{108 \times 2+x} \times 2=\frac{0.108}{108}$
or, $x=1784$
molar mass of $\mathrm{H}_{2} \mathrm{~A}=1786$
32. (C)
$P_{\text {gas }}=820-60=760$ torr $=1 \mathrm{~atm}$
$P V=\frac{m}{M} R T$
or $M=\frac{m R T}{P V}=\frac{10 \times 0.082 \times 300}{1 \times 2}=123$
33. (D)
${ }_{58} \mathrm{Ce}=[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
$C e^{+3}=[X e] 4 f^{1}$, i.e. only one unpaired electron
$\mu=\sqrt{n(\mathrm{n}+2)}=\sqrt{1(1+2)}=\sqrt{3}=1.73 \mathrm{BM}$
34. (B)
$\mathrm{Fe}^{2+} \rightarrow 4 \mathrm{~s}^{\circ} 3 \mathrm{~d}^{6}$

$1 L$	1	1	1	1

Spin multiplicity $=2 \Sigma s+1=2\left(+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-\frac{1}{2}\right)+1=4+1=5$
35. (D)
$\frac{\Delta x_{e} \cdot m_{e} \cdot \Delta v_{e^{-}}}{\Delta x_{p} \cdot m_{p} \cdot \Delta v_{p}}=1 \Rightarrow \frac{\Delta v_{e}}{\Delta v_{p}}=\frac{m_{p}}{m_{e}}$
36. (B)
$I E=+13.6 z^{2}=13.6 \times 9=122.4 \mathrm{ev}$,
$K E$ of emitted electron $=122.4-13.6=108.8 \mathrm{ev}$.
$\lambda=\sqrt{\frac{150}{\mathrm{~V} \text { (in volt })}}=\sqrt{\frac{150}{108.8}}=1.17 \mathrm{~A}^{\circ}$
37. (D)

$$
\begin{aligned}
& \mathrm{P}=4 \pi \mathrm{r}^{2} \psi^{2} \\
& \frac{\mathrm{dP}}{\mathrm{dr}}=0 \quad \Rightarrow \mathrm{z}=4
\end{aligned}
$$

38. (D)
39. (B)

200 gm (109\%) New oleum

New oleum

$\because 209 \mathrm{gm}$ new oleum can give maximum of $218 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$.
$\therefore 100 \mathrm{gm}$ new oleum can give maximum of $\frac{218}{209} \times 100=104.30$
\therefore \% labelling of new oleum $=104.3 \%$
40. (C)
$v \propto \frac{z}{n} ; r \propto \frac{n^{2}}{z} ;$
frequency of revolution $=\frac{v_{n}}{2 \pi r_{n}}$;
Conulombic force of attraction $=\frac{\mathrm{Ze}^{2}}{\left(4 \pi \varepsilon_{0}\right) \mathrm{r}^{2}}$
41. (C)

Let the transition took place from n_{2} to n_{1}.

$$
\begin{align*}
& \mathrm{n}_{2}+\mathrm{n}_{1}=4 \tag{1}\\
& \mathrm{n}_{2}-\mathrm{n}_{1}=2 \tag{2}
\end{align*}
$$

Using (1) \& (2), we get; $n_{2}=3 ; n_{1}=1$

$$
\frac{1}{\lambda}=\bar{v}=\left(R_{H}\right)\left(3^{2}\right)\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right]=\left(R_{H}\right)(9)\left(\frac{8}{9}\right)=8 R_{H}
$$

42. (C)

$$
\begin{aligned}
& \mathrm{E}_{\text {supp }}=\phi+\mathrm{K} . \mathrm{E} . \\
& \frac{\mathrm{hC}}{\lambda_{\mathrm{s}}}=\phi+\mathrm{K} . \mathrm{E}
\end{aligned}
$$

43. (C)
44. (A)
45. (A)
46. (B)

$$
\begin{aligned}
& \frac{2 \mathrm{E}_{1}}{\mathrm{~N}_{\mathrm{O}}}, \frac{2 \mathrm{E}_{2}}{\mathrm{~N}_{\mathrm{O}}} \\
& x(\mathrm{~g}) \rightarrow \mathrm{X}_{(\mathrm{g})}^{+}+1 \mathrm{e} \\
& \frac{\mathrm{~N}_{\mathrm{o}}}{2} \longrightarrow \mathrm{E}_{1} \\
& \because \frac{\mathrm{~N}_{\mathrm{o}}}{2} \rightarrow \mathrm{E}_{1} \\
& \therefore 1-\frac{\mathrm{E}_{1}}{\frac{\mathrm{~N}_{0}}{2}}=\frac{2 \mathrm{E}_{1}}{\mathrm{~N}_{\mathrm{o}}} \\
& X(g)+1 e-X_{(g)}^{-}-E_{2} \\
& \stackrel{\mathrm{~N}_{\mathrm{o}}}{2} \longrightarrow \mathrm{E}_{2} \\
& 1 \longrightarrow \frac{E_{2}}{\frac{N_{0}}{2}}=\frac{2 E_{2}}{N_{0}}
\end{aligned}
$$

47. (D)

- Non-metals having gaint structure have high M.P. i.e. Si.

48. (A)

The element with atomic number 43 has the configuration :
$2,8,18,8+5,2$
$4 d^{5}, 5 s^{2}$
Thus, the element just above 43 belongs to 4 th period and has atomic number 25 . The configuration is :
$2,8,8,18+52$
$3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{2}$
49. (C)

The atomic number will be $2+8+8+18+16=52$
50. (C)

For isoelectronic species, the size of an ion increases with increase in the negative charge.
51. (C)

If protons are same, they must have same atomic number.
52. (D)
53. (B)
(i) Acidic oxides are generally formed by non-metals, SnO_{2} is amphoteric.
(ii) Basic oxides are generally formed by metal.
(iii) $\mathrm{ZnO}, \mathrm{BeO}, \mathrm{SnO}_{2}, \mathrm{Ga}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{SnO}$ are amphoteric in nature. It is react with strong acid and strong base, and as a result gives weak acid and weak base.
(iv) $\mathrm{N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}$ are neutral oxides. [CaO is basic oxides]
54. (A)
55. (A)

Correct order of B,C \& D
$\mathrm{BDE} \rightarrow \mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
Catenation $\rightarrow \mathrm{C} \gg \mathrm{Si}>\mathrm{Ge}=\mathrm{Sn} \gg \mathrm{Pb}$
$\mathrm{IP} \rightarrow \mathrm{Mn}^{+7}>\mathrm{Mn}^{+4}>\mathrm{Mn}^{+2}$
56. (C)

Due to size of Nitrogen is smaller than another.
57. (D)

Electrons in orbitals bearing a lower ' n ' value are more attrached to the nucleus then electrons in orbitals bearing a higher ' n ' value. Hence, the removal of electrons from orbitals bearing a higher ' n ' value is easier than the removal of electrons from orbitals having a lower ' n ' value.
58. (B)

Within a period, the oxidising charactor increases from left to right, therefore among F,O and nitrogen oxidising power decreases in the order $\mathrm{F}>\mathrm{O}>\mathrm{N}$. However within a group oxidising power decreases from top to bottom. Thus, fluorine is more oxidising aent than CL. Further because ' O ' is more eletronegative than Cl , therefore oxygen is more oxidising agent than CL .
Order of oxidising property $=\mathrm{F}>\mathrm{O}>\mathrm{Cl}>\mathrm{N}$
59. (D)

Due to decerasing trend of I.E. reactivity increase along the group but due to standard electrode potential reactivity of halogen in decreasing order along the group.
60. (A)

$$
\Delta \mathrm{H}_{\text {ion. }}=-\Delta \mathrm{Heg}
$$

MATHEMATICS

61. (B)

$$
\begin{aligned}
& \sqrt{12-\sqrt{68+48 \sqrt{2}}} \\
& =\sqrt{12-\sqrt{(6+4 \sqrt{2})^{2}}}=\sqrt{12-6-4 \sqrt{2}}=\sqrt{6-4 \sqrt{2}}=\sqrt{(2-\sqrt{2})^{2}}=2-\sqrt{2}
\end{aligned}
$$

62. (B)
$x=\sqrt{3-\sqrt{5}} \quad y=\sqrt{3+\sqrt{5}}$
$x y=2$
$x+y=\sqrt{x^{2}+y^{2}+2 \times 2}$
$=\sqrt{6+4}=\sqrt{10}$
$x-y=\sqrt{6-4}=\sqrt{2}$
Put the value we get the ans.
$(x-y)+2 x y(x+y)-x y(x-y)\left(x^{2}+y^{2}+x y\right)$
$-\sqrt{450}+\sqrt{160}$
63. (C)

Given, $|4 x+3|+|3 x-4|=12$
When $x \leq \frac{-3}{4}$
$-(4 x+3)-(3 x-4)=12$
$-7 x=11 \Rightarrow x=-\frac{11}{7}$ (Accepted)
When $\frac{-3}{4}<x \leq \frac{4}{3}$
$4 x+3-(3 x-4)=12 ; x=5$ (Rejected)
...(ii)when $x>\frac{4}{3}$
$4 x+3+(3 x-4)=12 ;$
$7 x=13 \Rightarrow x=\frac{13}{7}$ (Accepted)
From (i) $x=-\frac{11}{7}$ From (ii) $x=5$ (reject)
From (iii) $x=\frac{13}{7}$
64. (D)

$$
\begin{aligned}
& =\frac{2^{\log _{2}\left(a^{4}\right)}-3^{\log _{3}\left(a^{2}+1\right)}-2 a}{7^{\log _{7}\left(a^{2}\right)}-a-1}=\frac{a^{4}-\left(a^{2}+1\right)-2 a}{a^{2}-a-1} \\
& =\frac{\left(a^{2}\right)^{2}-(a+1)^{2}}{\left(a^{2}-a-1\right)}=a^{2}+a+1
\end{aligned}
$$

65. (A)

$$
a, b, c \text { in A.P. } \Rightarrow 2 b=a+c \ldots \text { (i) }
$$

p, q, r, in H.P. $\Rightarrow q=\frac{2 p r}{p+r}$
$\mathrm{ap}, \mathrm{bq}, \mathrm{cr}$ in G.P. $\Rightarrow \mathrm{b}^{2} \mathrm{q}^{2}=\mathrm{acpr}$
From (ii) \& (iii), we get

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{b}^{2} \cdot 4(\mathrm{pr})^{2}}{(\mathrm{p}+\mathrm{r})^{2}}=\mathrm{ac} p r \quad \Rightarrow \frac{(a+c)^{2} \mathrm{pr}}{(\mathrm{p}+\mathrm{r})^{2}}=\mathrm{ac}(\text { from (i)) } \\
& \Rightarrow \frac{(p+r)^{2}}{p r}=\frac{(a+c)^{2}}{a c} \Rightarrow \frac{p^{2}+r^{2}}{p r}+2=\frac{a^{2}+c^{2}}{a c}+2 \\
& \Rightarrow \frac{p}{r}+\frac{r}{p}=\frac{a}{c}+\frac{c}{a}
\end{aligned}
$$

66. (A)

$$
\begin{aligned}
& x=2^{\log _{2} 8 \log _{11}^{1331}} \\
& x=2^{9}
\end{aligned}
$$

$$
y=2^{\frac{1}{4}}
$$

$$
\begin{gathered}
\log _{B} N=\frac{\log 4}{\log 5} \frac{\log 5}{\log 6}----\frac{\log 36}{\log 37} \\
=\frac{\log 4}{\log 37}=\log _{37}{ }^{4}
\end{gathered}
$$

$$
Z=\frac{4}{37}
$$

$$
(x y)^{z}=\left(2^{9} .2^{1 / 4}\right) \frac{4}{37}=\left(2^{\frac{37}{4}}\right)^{\frac{4}{37}}=2
$$

67. (A)
$x_{i}>0, i=1,2, \ldots ., 50 \& x_{1}+x_{2}+x_{3}+\ldots .+x_{50}=50$
or $\sum_{1}^{50} x_{i}=50 \Rightarrow \frac{\Sigma x_{i}}{50}=1$
\because A.M. \geq H.M.
$\frac{\left(\sum_{1}^{50} x_{i}\right)}{50} \geq \frac{50}{\left(\sum_{1}^{50} \frac{1}{x_{i}}\right)} \Rightarrow 1 \geq \frac{50}{\left(\sum_{1}^{50} \frac{1}{x_{i}}\right)}$
$\Rightarrow \sum_{1}^{50} \frac{1}{x_{i}} \geq 50$, Min value of $\Sigma \frac{1}{x_{i}}=50$
68. (B)

Let $x=5 \cos \theta, y=5 \sin \theta$
$0<3 x+4 y \leq 25 \quad(\because 3 x+4 y>0)$
69. (C)

$$
\begin{gathered}
\because \frac{1}{\sqrt{n+\sqrt{n^{2}-1}}}=\frac{1}{\sqrt{\left(\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}\right)^{2}}}=\frac{1}{\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}}=\frac{\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}}{\frac{n+1}{2}-\frac{n-1}{2}} \\
=\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}
\end{gathered}
$$

Hence $a+b \sqrt{2}=\sum_{n=1}^{49}\left(\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}\right)$
$\Rightarrow \mathrm{a}+\mathrm{b} \sqrt{2}=\left(\sqrt{\frac{2}{2}}-0\right)+\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)+\left(\sqrt{\frac{4}{2}}-\sqrt{\frac{2}{2}}\right)+\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)+\ldots \ldots+\left(\sqrt{\frac{49+1}{2}}-\sqrt{\frac{49-1}{2}}\right)$
$=\sqrt{\frac{49+1}{2}}+\sqrt{\frac{48+1}{2}}-\frac{1}{\sqrt{2}}-0=5+3 \sqrt{2} \quad \Rightarrow \quad a=5, b=3$ and $a+b=8$.
70. (C)

Let $f(t)=9^{t}+9^{1-t}$ where $t=\sin ^{2} x, t \in[0,1]$
Use A.M. \geq G.M.
71. (A)

$$
10 \tan ^{4} \alpha+15=6\left(\tan ^{2} \alpha+1\right)^{2} \Rightarrow \tan ^{2} \alpha=\frac{3}{2} \Rightarrow 9 \operatorname{cosec}^{4} \alpha+8 \sec ^{4} \alpha=75
$$

72. (B)

$$
\begin{aligned}
& \mathrm{t}_{3}=\mathrm{t}_{1}+\mathrm{t}_{2} ; \mathrm{t}_{7}=1000 ; \mathrm{t}_{1}=1 \\
\because & \mathrm{t}_{7}=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}+\mathrm{t}_{5}+\mathrm{t}_{6} \\
\Rightarrow & 1000=2\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}+\mathrm{t}_{5}\right)=8\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right) \\
\Rightarrow & 1000=16\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}=\frac{1000}{16} \Rightarrow \mathrm{t}_{2}=\frac{123}{2}
\end{aligned}
$$

73. (B)
74. (C)

$$
\begin{aligned}
& \operatorname{cosec} A+\cot A=2 \\
\Rightarrow & \operatorname{cosec} A-\cot A=1 / 2 \\
\Rightarrow & \operatorname{cosec} A=5 / 4 \& \cot =3 / 4 \\
\Rightarrow & \cos A=3 / 5
\end{aligned}
$$

75. (A)
$\sec \theta-\tan \theta=\lambda \quad \Rightarrow \sec \theta+\tan \theta=\frac{1}{\lambda}$
\therefore subtracting, $2 \tan \theta=\frac{1}{\lambda}-\lambda \quad$ or $2\left(a-\frac{1}{4 a}\right)=\frac{1}{\lambda}-\lambda$
or $2 \mathrm{a}-\frac{1}{2 \mathrm{a}}=\frac{1}{\lambda}-\lambda \quad \Rightarrow \lambda=\frac{1}{2 \mathrm{a}},-2 \mathrm{a}$
76. (C)
$(A \cap B) \cup C=\{1,3,5,7,8,9\}$
$A^{\prime} \cap B^{\prime}=\{10\}$
$(A \cup B)^{\prime}=\{10\}$
$(A \cap B) \cap(A \cap C)=\{8\}$
77. (C)

We have,

$$
\begin{aligned}
& (2 x-3 y)^{2}+(3 y-4 z)^{2}+(4 z-2 x)^{2}=0 \Rightarrow 2 x=3 y=4 z \\
& \Rightarrow \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \text { are in } A P \Rightarrow x, y, z \text { are in HP }
\end{aligned}
$$

78. (C)
79. $\left(\mathrm{A}^{2}{ }^{-\mathrm{d}-\overline{2}} \overline{3}^{+\mathrm{d}-\overline{3}}\right.$
$\sin \alpha+\cos \alpha=-\frac{b}{a}$ and $\sin \alpha \cos \alpha=\frac{c}{a}$
$\Rightarrow 1+2 \sin \alpha \cos \alpha=\frac{b^{2}}{a^{2}} \Rightarrow 1+\frac{2 c}{a}=\frac{b^{2}}{a^{2}} \Rightarrow a^{2}+2 a c-b^{2}=0$
80. (C)
$\sec 40^{\circ}, \sec 80^{\circ}, \sec 160^{\circ}$ are the roots of $\frac{8}{t^{3}}-\frac{6}{t}+1=0$
or $t^{3}-6 t^{2}+8=0$
$\therefore \quad$ Sum of roots $=6$.
81. (B)

We have, $\sin \theta+\cos \theta=m$
and $\sec \theta+\operatorname{cosec} \theta=n$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\cos \theta}+\frac{1}{\sin \theta}=n \Rightarrow \frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta}=n \\
& \Rightarrow \frac{\mathrm{~m}}{\cos \theta \sin \theta}=\mathrm{n} \\
& \Rightarrow \cos \theta \sin \theta=\frac{m}{\mathrm{n}}
\end{aligned}
$$

Squaring (i), we get

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=m^{2} \Rightarrow 1+2 \cdot \frac{m}{n}=m^{2} \\
& \Rightarrow \frac{2 m}{n}=m^{2}-1 \Rightarrow 2 m=n\left(m^{2}-1\right) .
\end{aligned}
$$

82. (C)

$$
\begin{align*}
& a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \text { are in H.P. } \\
& \Rightarrow a_{2}=\frac{2 a_{1} a_{3}}{a_{1}+a_{3}} \quad \Rightarrow 2 a_{1} a_{3}=a_{2} a_{1}+a_{3} a_{2} \\
& \quad a_{4}=\frac{2 a_{3} a_{5}}{a_{3}+a_{5}} \Rightarrow 2 a_{3} a_{5}=a_{3} a_{4}+a_{5} a_{4} \\
& \Rightarrow a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}=2 a_{1} a_{3}+2 a_{3} a_{5} \tag{i}\\
& a_{3}=\frac{2\left(a_{1} a_{5}\right)}{a_{1}+a_{5}} \Rightarrow a_{1} a_{3}+a_{5} a_{3}=2 a_{1} a_{5} \tag{ii}
\end{align*}
$$

using (i) and (ii)
$a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}=2\left(2 a_{1} a_{5}\right)=4 a_{1} a_{5}$
83. (B)

Case I: When $2 \mathrm{x}-3 \geq 0$

$$
\text { i.e., } x \geq \frac{3}{2}
$$

In this case, we have

$$
\begin{aligned}
& |2 x-3|=2 x-3 \\
\therefore & |2 x-3|<x-1 \quad \Rightarrow \quad 2 x-3<x-1 \quad \Rightarrow \quad x-2<0 \quad \Rightarrow \quad x<2 \\
\Rightarrow & x \in[3 / 2,2) \quad[\because x \geq 3 / 2]
\end{aligned}
$$

Case II: When $2 x-3<0 \quad$ i.e., $x<\frac{3}{2}$
In this case, we have

$$
\begin{array}{rlll}
& |2 x-3|=-(2 x-3) & \\
\therefore & |2 x-3|<x-1 \Rightarrow & -(2 x-3)<x-1 \Rightarrow 3 x-4>0 \Rightarrow x>4 / 3 \\
\Rightarrow & x \in(4 / 3,3 / 2) \quad & {[\because x<3 / 2]}
\end{array}
$$

Thus, the set of the values of x satisfying the given inequation is $(4 / 3,3 / 2) \cup[3 / 2,2)=(4 / 3,2)$
84. (A)

Solve the inequations

$$
x^{2}-3 x+2 \leq 0 \text { and } 2 x^{2}-3 x-5 \geq 0
$$

$\Rightarrow 1 \leq x \leq 2$ and $x \leq-1$ or $x \geq \frac{5}{2}$
$\therefore \mathrm{x} \in \phi$
85. (B)
$a=\log _{10} 2=\log _{10} \frac{10}{5}=1-\log _{10} 5$
$\Rightarrow \log _{10} 5=1-a$
86. (D)
$\left|\frac{1-x^{2}}{x}\right|+|x|=\left|\frac{1-x^{2}}{x}+x\right|=\left|\frac{1}{x}\right|$
$\Rightarrow \frac{1-x^{2}}{x} \cdot x \geq 0 \Rightarrow x \in[-1,1]-\{0\}$
87. (C)

$$
3^{\mathrm{x}}-8=3^{2-\mathrm{x}} \text { and } 3^{\mathrm{x}}-8>0
$$

Let $3^{x}=y(y>0)$
$\Rightarrow y-8=\frac{9}{y}$
$\Rightarrow y^{2}-8 y=9$
$y=9, y=-1$
$x=2$
88. (D)
$2^{n+1}(n-1)+2=2^{n+10}+2$.
$\therefore \mathrm{n}=513$.
Sum of digits $=9$.
89. (C)

It is obvious that a, b and c are the roots of the equation $m t^{3}+(l-p) t-k q=0$, where (p, q) is the point of concurrency.
Obviously sum of roots $=a+b+c=0$
$\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$
90. (D)
$(1997,0)$ lies on $y=m x+c$
$\Rightarrow 0=1997 m+c \Rightarrow c=-1997 m$
$\Rightarrow \mathrm{mc}=-1997 \mathrm{~m}^{2} \leq 0$
which is not possible.

