SOLUTIONS

PROGRESS TEST-6
 RBA

 JEE MAIN PATTERN
Test Date: 04-12-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (B) Component of \vec{v} along $\vec{a}=(\vec{v} \cdot \hat{a})$
$=(6 \hat{i}+2 \hat{j}-2 \hat{k}) \cdot \frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})}{\sqrt{3}}$
$=\frac{6+2-2}{\sqrt{3}}=\frac{6}{\sqrt{3}}=2 \sqrt{3}$
In vector form $=(2 \sqrt{3}) \hat{a}$
$=2 \sqrt{3} \frac{(\hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}})}{\sqrt{3}}$
$=2(\hat{i}+\hat{j}+\hat{k})$
2. (C)

Let acceleration of mass m relative to wedge down the plane is a_{r}. Its absolute acceleration in horizontal direction is $\mathrm{a}_{\mathrm{r}} \cos 60^{\circ}-\mathrm{a}$ (towards right). Hence, let N be the normal reaction between the mass and the wedge. Then
$N \sin \theta=M a=m\left(a_{r} \cos 60^{\circ}-a\right)$
or \quad ar $=\frac{(M+m) a}{m \cos 60^{\circ}}=\frac{2(M+m) a}{m}$
3. (C)

Free Body Diagram

$\mathrm{T} \sin \theta=20$
$\mathrm{T} \cos \theta=\mathrm{W}$

$$
\begin{aligned}
& \tan \theta=\frac{20}{\mathrm{~W}} \\
& \mathrm{~W}=20 \cot \theta \\
& \mathrm{~W}=20 \cot 30^{\circ} \\
& \mathrm{W}=20 \sqrt{3}=20 \times 1.732 \\
& \mathrm{Weight} \mathrm{~W}=34.64 \mathrm{~N} \\
& \text { mass ' } \mathrm{m} \text { ' }=\frac{\mathrm{W}}{\mathrm{~g}}=3.5 \mathrm{~kg} .
\end{aligned}
$$

4. (A)

Since ' M ' is at rest the tension in the string
$=\frac{\mathrm{Mg}}{2}$ Let acceleration of m and m ' is ' f ' one will move downward and other will move upward

$$
\begin{equation*}
\mathrm{mg}-\frac{\mathrm{Mg}}{2}=\mathrm{mf} \tag{i}
\end{equation*}
$$

$\frac{\mathrm{Mg}}{2}-\mathrm{m}^{\prime} \mathrm{g}=\mathrm{m}^{\prime} \mathrm{f}$ \qquad

Solving equation (i) and (ii)

$$
\frac{4}{\mathrm{M}}=\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{~m}_{1}}
$$

5. When the object is placed at the focus of the lens, the refracted rays will be incident normally on the silvered surface. So, they will retrace their path.

Hence, the image will be formed at the location of the object. In this way, the combination
 behaves as a concave mirror of radius of curvature $(R)=20 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore \quad f=\frac{R}{2}=10 \mathrm{~cm} \\
& \therefore \quad \text { (D) }
\end{aligned}
$$

6. At maximum height $\mathrm{v}_{1}=\mathrm{v} \cos \theta$

At half of maximum height $v_{2}=\sqrt{\mathrm{v}^{2} \cos ^{2} \theta+\left(\mathrm{v}_{\mathrm{y}}\right)^{2}}$
For $v_{\text {vertical }} v_{y}^{2}=v^{2} \sin ^{2} \theta-2 g \frac{H}{2}=v^{2} \sin ^{2} \theta-g \frac{v^{2} \sin ^{2} \theta}{2 g}=\frac{v^{2} \sin ^{2} \theta}{2}$
$\frac{v_{1}}{v_{2}}=\sqrt{\frac{2}{5}} \Rightarrow \tan \theta=\sqrt{3}, \theta=60^{\circ}$
$\therefore \quad$ (D)
7. $\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=\frac{2 \times 10 \times \frac{4}{5}}{10}=\frac{8}{5} \mathrm{~s}$
$O B=R=\frac{u^{2} \sin 2 \theta}{g}=\frac{100 \times 2 \times \frac{4}{5} \times \frac{3}{5}}{10}=\frac{48}{5} \mathrm{~m}$

$A B=\frac{8}{5} \times 5=8 \mathrm{~m}$
$\mathrm{OA}=\mathrm{OB}+\mathrm{AB}=\frac{48}{5}+8=17.6 \mathrm{~m}$
$\therefore \quad$ (D)
8. $\mathrm{v}=2 \mathrm{t}^{2}, r=100 \mathrm{~m}$
$a_{t}=\frac{d v}{d t}=4 t$
$\mathrm{a}_{\mathrm{t}}(\mathrm{t}=5 \mathrm{~s})=20 \mathrm{~ms}^{-2}$

$v(t=5 \mathrm{~s})=50 \mathrm{~ms}^{-1}$
$a_{c}(t=5 \mathrm{~s})=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{50 \times 50}{100}=25 \mathrm{~ms}^{-2}$
$a=\sqrt{a_{c}^{2}+a_{t}^{2}}=\sqrt{1025} \approx 32 \mathrm{~ms}^{-1}$
$\therefore \quad$ (D)
9. $\mathrm{t}_{1}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}, \mathrm{t}_{2}=\frac{2 \mathrm{u} \cos \theta}{\mathrm{g}}$
$\therefore \quad \mathrm{t}_{1} \mathrm{t}_{2}=\frac{2 \mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g} \times \mathrm{g}}=\frac{2}{\mathrm{~g}} \mathrm{R}$
$\therefore \quad \mathrm{t}_{1} \mathrm{t}_{2} \propto \mathrm{R}$
$\therefore \quad(C)$
10. (B) $T=m_{2} \sqrt{g^{2}+\left(\frac{v_{2}^{2}}{r}\right)^{2}}=\frac{m_{1} v_{1}^{2}}{r}$
11. (B)

In time t particle has rotated an angle $\theta=\omega t$. Displacement

$$
\begin{aligned}
S & =P Q=\sqrt{Q R^{2}+P R^{2}} \\
& =\sqrt{(a \sin \omega t)^{2}+(a-a \cos \omega t)^{2}} \\
s & =2 a \sin \frac{\omega t}{2}
\end{aligned}
$$

12 (D)
$N \sin \theta=m g$

$N \cos \theta=m v^{2} / r$
$\Rightarrow \tan \theta=\mathrm{rg} / \mathrm{v}^{2}$
$\Rightarrow \frac{\mathrm{r}}{\mathrm{h}}=\frac{\mathrm{rg}}{\mathrm{v}^{2}} \quad \Rightarrow \mathrm{~h}=\frac{\mathrm{v}^{2}}{\mathrm{~g}}=2.5 \mathrm{~cm}$
13. (D)
$\omega=2 / \pi \mathrm{rev} / \mathrm{s}=4 \mathrm{rad} / \mathrm{s}$

$T \sin \theta=m \omega^{2} r$
$\Rightarrow \mathrm{T} \sin \theta=\mathrm{m} \omega^{2}(\mathrm{~L} \sin \theta)$
$\Rightarrow \mathrm{T}=\mathrm{m} \omega^{2} \mathrm{~L}=\mathrm{m}(4)^{2} \mathrm{~L}=16 \mathrm{~mL}$
14. (D)
\because Cyclist returns at initial point
\therefore Displacement $=0$
$\mathrm{V}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=\frac{\mathrm{R}+\frac{\pi \mathrm{R}}{2}+\mathrm{R}}{(1 / 6)}=6 \mathrm{R}(2+\pi / 2)$
$=21.4 \mathrm{~km}$
15. (B)
$W_{g}+W_{F r}=\Delta K$
$W_{g}=-W_{F r}$
$\mathrm{W}_{\mathrm{Fr}}=-\mathrm{mgh}$
$W_{f}+W_{g}+W_{f}=\Delta k$
$W_{f}=-W_{g}-W_{F r}$
$\left(W_{F}=2 m g h\right)$
16. (C)

The work done by man is negative of magnitude of decrease in potential energy of chain.

$\Delta U=m g \frac{L}{2}-\frac{m}{2} g \frac{L}{4}=3 m g \frac{L}{8}$
$\therefore \mathrm{W}=-\frac{3 \mathrm{mg} \ell}{8}$
17. (D)
$\because \overrightarrow{\mathrm{F}}=-\left[\frac{\Delta \mathrm{U}}{\Delta \mathrm{x}} \hat{\mathrm{i}}+\frac{\Delta \mathrm{U}}{\Delta \mathrm{y}} \hat{\mathrm{j}}\right]=-[-7 \hat{\mathrm{i}}+24 \hat{\mathrm{j}}]$
$\therefore \quad F=\sqrt{7^{2}+24^{2}}=25 \mathrm{~N} \Rightarrow \mathrm{a}=\mathrm{F} / \mathrm{m}=25 / 5=5 \mathrm{~m} / \mathrm{s}^{2}$
$\because \quad \mathrm{v}=\mathrm{u}+\mathrm{at}$

$$
=0+5 \times 2=10 \mathrm{~m} / \mathrm{s}
$$

18. (A)

Power $=A v^{3} d$
$=(A v)\left(v^{2} d\right)$
$=($ volume per sec) \times (pressure $)$
$=\frac{4000 \times 10^{-6}}{60} \times\left(130 \times 10^{-3} \times 13.6 \times 10^{3} \times 10\right)$
$=1.15$ watt
19. Total frictional force on $A B=\int_{x}^{L} \frac{M g}{L} K x d x$

$\therefore \quad$ Heat generated

$$
\begin{aligned}
& =\int_{0}^{L} \frac{M g K}{L}\left[\frac{L^{2}-x^{2}}{2}\right] d x=\frac{K m g L^{2}}{3} \\
& \therefore \quad \text { (B) }
\end{aligned}
$$

20. (B)
$B_{A B}=\frac{\mu_{0} I}{4 \pi(d)}\left(\sin \alpha_{1}-\sin \alpha_{2}\right)$
Where d is the \perp distance and α_{1} and α_{2} are the angles between \perp and ends of wire.
$B_{A B}=\frac{\mu_{0} I}{4 \pi \sqrt{2}}\left[\sin 90^{\circ}-\sin 45^{\circ}\right]$
$\stackrel{(\sqrt{2}, \sqrt{2})}{B} \quad \stackrel{\mathrm{I} \quad \mathrm{A}}{ }$ $\mathrm{d}=\sqrt{2} \quad \alpha_{2}=45^{\circ}$ R $\alpha_{1}=90^{\circ} \ldots \ldots . .$.
$=\frac{\mu_{0} \mathrm{I}}{4 \pi \sqrt{2}}\left[1-\frac{1}{\sqrt{2}}\right]=\frac{\mu_{0} \mathrm{I}(\sqrt{2}-1) \hat{\mathrm{k}}}{8 \pi}$
Magnetic field due to BC will be same and in same direction.
$\therefore \mathrm{B}_{0}=\frac{2 \times \mu_{0} \mathrm{I}(\sqrt{2}-1)}{8 \pi} \hat{\mathrm{k}}$
21. (C)
$V_{C D}=\phi \times$ Balance length
$9.91 \mathrm{~V}=\left(\frac{\mathrm{E}_{0}}{\mathrm{~L}} \times \frac{\mathrm{R}_{\mathrm{w}}}{\mathrm{R}_{\mathrm{Net}}}\right) \times$ B. ℓ
$9.91 \mathrm{~V}=\frac{100}{10} \times \frac{991}{1000} \times$ B.ℓ
B. $\ell=\frac{9.91}{9.91}=1 \mathrm{~m}$
22. (A)
$E_{0}=\frac{\mathrm{kq}}{1^{2}}+\frac{\mathrm{kq}}{2^{2}}+\frac{\mathrm{kq}}{4^{2}}+\frac{\mathrm{kq}}{8^{2}}$ \qquad
$E=k q\left(1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \ldots \infty\right)$
$E=k q\left(\frac{q}{1-r}\right)=k q \cdot \frac{1}{1-\left(\frac{1}{4}\right)}=\frac{\mathrm{kq} 4}{3}$
$12 \times 10^{3}=\frac{9 \times 10^{9} \times 4}{3} \times q \quad \therefore \quad q=1 \mu C$
23. (A)

Initially force on charge q_{0} is

$$
F=q_{0}(2 E)=2 q_{0} E
$$

If separation between the plates is doubled $\mathrm{E}=$ same
$\therefore \mathrm{F}=$ same
24. $\frac{1}{C_{\infty}}=\frac{1}{C_{\infty}+C}+\frac{2}{C}=\frac{3 C+2 C_{\infty}}{C\left(C_{\infty}+C\right)}$

$$
\begin{aligned}
& 2 C_{\infty}^{2}+2 C C_{\infty}-C^{2}=0 \Rightarrow C_{\infty}=C\left(\frac{-1+\sqrt{3}}{2}\right) \\
& \therefore \quad \text { (C) }
\end{aligned}
$$

25. (B)

Potential at centre $=\mathrm{V}_{\mathrm{q}}+\mathrm{V}_{\text {induced }}$

$$
\begin{aligned}
& =\mathrm{V}_{\mathrm{q}}+0 \\
& =\mathrm{V}_{\mathrm{q}}=\frac{\mathrm{q}}{4 \pi \epsilon_{0} \mathrm{r}}
\end{aligned}
$$

Potential at $\mathrm{P}=$ potential at C
$\mathrm{V}_{\mathrm{q}}+\mathrm{V}_{\text {induced }}=\frac{\mathrm{q}}{4 \pi \epsilon_{0} \mathrm{r}}$
$V_{\text {induced }}=\frac{q}{4 \pi \epsilon_{0} r}-\frac{q}{4 \pi \epsilon_{0} r_{1}}=\frac{\mathrm{kq}}{\mathrm{r}}-\frac{\mathrm{kq}}{\mathrm{r}_{1}}$
26. (D)

\therefore Force perpendicular to $B C$ is zero.
27. [C]

The capacitor is charged by a battery of 25 V . Let the magnitude of surface charge density on each plate be σ. Before inserting the dielectric slab, electric field strength between the plates,

$$
\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}=\frac{\mathrm{V}}{\mathrm{~d}}
$$

or $\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}=\frac{25}{5 \times 10^{-3}}=5000 \mathrm{~N} / \mathrm{C}$
The capacitor is disconnected from the battery but charge on it will not change so that σ has the same value. When a dielectric slab of thickness 3 mm is placed between the plates, the thickness of air between the plates will be $5-3=2 \mathrm{~mm}$. Electric field strength in air will have the same value ($5000 \mathrm{~N} / \mathrm{C}$) but inside the dielectric, it will be $\frac{5000}{\mathrm{~K}}=\frac{5000}{10}$
$=500 \mathrm{~N} / \mathrm{C}$
so potential difference $=\mathrm{E}_{\text {air }} \mathrm{d}_{\text {air }}+\mathrm{E}_{\text {med }} \mathrm{d}_{\text {med }}$
$=5000 \times\left(2 \times 10^{-3}\right)+500 \times\left(3 \times 10^{-3}\right)$
$=11.5 \mathrm{~V}$
28. (B)

Step I:

Step II: $V_{A}-V_{B}=\frac{K q}{r}-\left(-\frac{K q}{r}\right)=\frac{2 K q}{r}$

Step III: $\mathrm{C}=\frac{\mathrm{q}}{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}}-\frac{\mathrm{qr}}{2 \mathrm{Kq}}=2 \pi \varepsilon_{0} \mathrm{r}$
29. (C)

$$
\mathrm{U}=\frac{1}{2} C V^{2}
$$

$$
\mathrm{U}=\frac{1}{2}\left[\frac{\varepsilon_{0} \mathrm{~b}(\ell-\mathrm{x})}{\mathrm{d}}+\frac{\varepsilon_{0} \mathrm{bx}}{\mathrm{~d}} \mathrm{~K}\right] \mathrm{v}^{2}=\frac{\varepsilon_{0} \mathrm{bv}^{2}}{2 \mathrm{~d}}(\ell-\mathrm{x}+\mathrm{xK})
$$

$$
\mathrm{U}=\frac{\varepsilon_{0} \mathrm{bv}^{2}}{2 \mathrm{~d}}[\ell+\mathrm{k}(\mathrm{~K}-1)]
$$

30 (D)

$$
\begin{aligned}
& C_{e q}=C_{1}+C_{2}=2+2=4 \mu \mathrm{~F} \\
& q=C_{e q} V=4 \mu \mathrm{~F} \times 8=32 \mu \mathrm{q}
\end{aligned}
$$

CHEMISTRY

31. (D)

Equivalent mass of KMnO_{4} in acidic, basic and neutral medium are 31.6158 and 52.6. The ratio will be 31.6 : 158 : 52.6 .
Acid medium : Basic medium : Neutral medium
$E_{w}=\frac{M_{w}}{5}=\frac{158}{5}$
: $\quad E_{w}=\frac{M_{w}}{1}=\frac{158}{1}=158$

$$
E_{w}=\frac{M_{w}}{3}=\frac{158}{3}
$$

3
15
5
32. (C)

$$
\begin{aligned}
& \mathrm{W}=\Delta \mathrm{E} \quad(\text { For } q=0) \\
& -\mathrm{P}_{\text {ext }} \Delta \mathrm{V}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T} \\
& -1(2-1)=1 \times \frac{3}{2} \mathrm{R}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}\right) \\
& \frac{-2}{3 \mathrm{R}}=\mathrm{T}_{\mathrm{f}}-\mathrm{T} \\
& \mathrm{~T}_{\mathrm{f}}=\mathrm{T}-\frac{2}{3 \times 0.0821}
\end{aligned}
$$

33. (C)

The van der Waals' equation for 1 mol gas will be

$$
\left[P+\frac{a}{V^{2}}\right][V-b]=R T
$$

Since, $b=0$
$\therefore \quad P V=R T-\frac{a}{V} \quad(y=c+M X$ form $)$
when PV is plotted against $(1 / \mathrm{V})$, we get straight line with negative slope, i.e. (-a).
\therefore Slope $=\frac{21.1-24.6}{3}=-1.5=-a$

$$
a=1.5
$$

34. (C)

Work done = Area under BC line
$\frac{1}{2}\left(6 P_{1}+P_{1}\right) \times 2 V_{1}=7 P_{1} V_{1}$
35. (B)

$$
\begin{aligned}
& G=H-T S \\
& G=U+P V-T S \\
& \Delta G=\Delta U+P \Delta V+V \Delta P-T \Delta S-S \Delta T
\end{aligned}
$$

From the first and second laws,
$T \Delta S=\Delta U+P \Delta V$
$\therefore \quad \Delta \mathrm{G}=\mathrm{V} \Delta \mathrm{P}-\mathrm{S} \Delta \mathrm{T}$
At constant pressure, $\Delta \mathrm{P}=0$

$$
\frac{\Delta \mathrm{G}}{\Delta \mathrm{~T}}=-\mathrm{S}
$$

From eqns. (i) and (ii)

$$
\begin{aligned}
& G=H+T \frac{\Delta G}{\Delta T} \text { or } G=H+T\left(\frac{\partial G}{\partial T}\right)_{P} \\
& -\frac{H}{T^{2}}=-\frac{G}{T^{2}}+\frac{1}{T}\left(\frac{\partial G}{\partial T}\right)_{P}=\left[\frac{\partial(G / T)}{\partial T}\right]_{P} \\
& H=-T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{P}
\end{aligned}
$$

36. (B)

$$
\begin{aligned}
\Delta S & =2.303 \mathrm{nR} \log _{10}\left(\frac{V_{2}}{V_{1}}\right) \\
= & 2.303 \times 2 \times 8.314 \log _{10}\left(\frac{100}{10}\right) \\
& =38.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

37. (A)
m -moles of $\mathrm{HCl}=20 \times 0.1=2$
m-moles of MgO reacted with $\mathrm{HCl}=\frac{2}{2} \Rightarrow 1$
mass of MgO present $=1 \times 40 \mathrm{mg}$
$\therefore \quad \%$ of $\mathrm{MgO}=\frac{40}{320} \times 100=12.5 \%$
38. (C)

$$
\begin{aligned}
& \frac{\mathrm{r}_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}}{\mathrm{r}_{\mathrm{CH}_{4}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{CH}_{4}}}{\mathrm{M}_{\mathrm{CH}_{3} \mathrm{OH}_{3}}} \times \frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}}{\mathrm{P}_{\mathrm{CH}_{4}}}} \\
& =\sqrt{\frac{16}{46}} \times \frac{0.8}{0.2}=2.36: 1
\end{aligned}
$$

39. (A)
$\frac{\partial}{\partial \mathrm{T}} \ln \mathrm{K}_{\mathrm{P}}=\frac{\Delta \mathrm{H}}{\mathrm{RT}^{2}}$
$\frac{\partial}{\partial T} \ln K=\frac{E_{a}}{R T^{2}}$
40. (C)

$$
\begin{aligned}
& 0.40 \\
&=a T_{1}^{3}+b T_{1} \\
& 0.40=a \times(1000)+b \times 10 \\
& 0.4=1000 a+10 b \\
& 0.92-\mathrm{aT}_{2}^{3}+b T_{2} \\
& \Rightarrow 0.92=a \times 8000+20 \mathrm{~b}
\end{aligned}
$$

from Eqs. (1) and (2)

$$
\begin{aligned}
& a=2 \times 10^{-3}, b=0.038 \\
& S_{m}=\int \frac{a T^{3}+b T}{T} \cdot d T \\
& =\frac{a\left[T_{2}^{3}-T_{1}^{3}\right]}{3}+b\left[T_{2}-T_{1}\right] \\
& =0.813 \mathrm{~J} / \mathrm{K}-\mathrm{mol}
\end{aligned}
$$

41. (C)
42. (C)

Compound ' A ' can show only optical isomerism due to presence of a chiral carbon, ' B ' can show only geometrical isomerism, ' C ' can show both geometrical as well as optical isomerism, D can show only optical isomerism.
43. (C)
(A) \& (B) Cis-1,3-dimethyl cyclohexane \& (D) is trans-1,4-dimethyl cyclohexane
44. (D)

The compound P is identical with (D) because both are meso. ($\mathrm{A}, \mathrm{B} \& \mathrm{C}$) are optically active.
45. (C)
46. (D)
47. (A)
melting point \propto closed packing .
p- substituted benzene has linear geometry and such molecules are closely packed in their solid state.
48. (C)
49. (B)
50. (B)
51. (C)
$\left[\mathrm{Fe}\left(\mathrm{O}_{2}\right)(\mathrm{CN})_{4} \mathrm{Cl}\right]^{4-}$
Chlorotetracyano superoxoferrate (II) anion.
52. (C)

$$
\left.\begin{array}{l}
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]} \\
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]\left[\mathrm{PtCl}_{3} \mathrm{NH}_{3}\right]} \\
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]\left[\mathrm{PtCl}\left(\mathrm{NH}_{3}\right)_{3}\right]} \\
\left.[\mathrm{CuCl})_{4}\right]\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]
\end{array}\right] \text { Four isomers }
$$

53. (A)

I

Both are geometrical isomerism
54. (D)

Due to decerasing trend of I.E. reactivity increase along the group but due to standard electrode potential reactivity of halogen in decreasing order along the group..
55. (B)
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ exist as $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$

sp^{2} hybridised boron atom $=2$; $\quad \mathrm{sp}^{3}$ hybridised boron atom $=2$.
56. (A)
$\Delta \mathrm{H}_{\text {ion. }}=-\Delta \mathrm{Heg}$
57. (B)

Conceptual.
58. (C)
$\left[\mathrm{Zn}(\mathrm{Br})_{4}\right]^{2-}=\mathrm{Sp}^{3}$ tetrahedral. Diamagnetic.

59. (B)

Strength of ligands α stability of complex.
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$is correct order of stability
60. (C)
(A)

(B)

(C) $\mathrm{Sp}^{2} \quad$ ' S ' Chr = 33%
'P' Chr = 66\%
(D) Hybridized orbitals always from 6 (sigma) bond due to π bond form by pure orbital only.

MATHEMATICS

61. (A)

Let $\log _{3} x=t$, then
$2 t^{2}-|t|=-p$
if $t \geq 0,2 t^{2}-t=-p$
if $\mathrm{t}<0,2 \mathrm{t}^{2}+\mathrm{t}=-\mathrm{p}$
\therefore for 4 distinct roots $-\frac{1}{8}<-\mathrm{p}<0 \Rightarrow 0<\mathrm{p}<\frac{1}{8}$

62. (C)
$\mathrm{m}_{\mathrm{SP}}=\frac{2 \tan \alpha}{\tan ^{2} \alpha-1}=-\tan 2 \alpha=\tan (\pi-2 \alpha)$
since $0<\pi-2 \alpha<\pi$
63. (A) $\quad \sin x \sqrt{8}|\cos x|=1$

$$
2 \sin x|\cos x|=\frac{1}{\sqrt{2}}
$$

If $\quad-\frac{\pi}{2}<x<\frac{\pi}{2}$

$$
\sin 2 x=\sin \frac{\pi}{4} \Rightarrow 2 x=n \pi+(-1)^{n} \frac{\pi}{4} \Rightarrow x=\frac{\pi}{8}, \frac{3 \pi}{8} \Rightarrow \text { common difference }=\frac{\pi}{4}
$$

64. (B)
$f(x)=\sqrt{3} \sin x-\cos x+2=2 \sin \left(x-\frac{\pi}{6}\right)+2$
Since $f(x)$ is one-one and onto, f is invertible.
Now fof ${ }^{-1}(\mathrm{x})=\mathrm{x} \Rightarrow 2 \sin \left(\mathrm{f}^{-1}(\mathrm{x})-\frac{\pi}{6}\right)+2=\mathrm{x}$
$\Rightarrow \quad \sin \left(f^{-1}(x)-\frac{\pi}{6}\right)=\frac{x}{2}-1 \Rightarrow f^{-1}(x)=\sin ^{-1}\left(\frac{x}{2}-1\right)+\frac{\pi}{6}$
Because $\left|\frac{x}{2}-1\right| \leq 1$ for all $x \in[0,4]$
Hence (B) is the correct answer.
65. (C)

Clearly $\mathrm{g}(\mathrm{x})$ is symmetric about $\mathrm{x}=1 / 2$

66. (B)
$x=0 \Rightarrow f(2)=2 f(0)-f(1)=2 \times 2-3=1$
$x=1 \Rightarrow f(3)=6-1=5$
$x=2 \Rightarrow f(4)=2 f(2)-f(3)=2 \times 1-5=-3$
$x=3 \Rightarrow f(5)=2 f(3)-f(4)=2(5)-(-3)=13$
Hence (B) is correct answer.
67. (B)

$$
\begin{aligned}
& 3=\lim _{x \rightarrow 0}(1+a \sin x)^{\operatorname{cosec} x}\left[1^{\infty} \text { form }\right] \Rightarrow \lim _{x \rightarrow 0} e^{\operatorname{cosec} x . a \sin x}=e^{a} \\
& \therefore e^{a}=3 \Rightarrow a=\log _{e} 3=\ln 3 .
\end{aligned}
$$

68. (B)

Using LMVT, $\frac{\tan ^{-1} \beta-\tan ^{-1} \alpha}{\beta-\alpha}=\frac{1}{1+\mathrm{c}^{2}}$
where, $0<\alpha<\mathrm{c}<\beta<\sqrt{3}$
So, $\frac{1}{4}<\frac{1}{1+\mathrm{c}^{2}}<1$
$\Rightarrow \frac{1}{4}<\frac{\tan ^{-1} \beta-\tan ^{-1} \alpha}{\beta-\alpha}<1 \Rightarrow \frac{1}{4}<\frac{\tan ^{-1}\left(\frac{\beta-\alpha}{1+\alpha \beta}\right)}{\beta-\alpha}<1$
$\Rightarrow 1<\frac{\beta-\alpha}{\cot ^{-1}\left(\frac{1+\alpha \beta}{\beta-\alpha}\right)}<4$
69. (C)

Equation of Normal through A is :
$\mathrm{y}=\mathrm{m}_{1} \mathrm{x}-2 \mathrm{am} \mathrm{m}_{1}-\mathrm{am}_{1}{ }^{3}$
for the parabola $y^{2}=4 a x$ where $4 a=1071$
Here $N \equiv\left(\frac{1071}{2}+\frac{1071}{4} m_{1}^{2}, 0\right)$

If $B=(h, k)$, then $k=\frac{1071}{4} \cdot m_{1}$

But since $k=m_{1} h-2 a m_{1}-a m_{1}{ }^{3}$
$\Rightarrow m_{1} m_{2} m_{3}=\frac{-k}{a}=\frac{-\frac{1071}{4} m_{1}}{\frac{1071}{4}} \Rightarrow m_{2} m_{3}=-1$
Hence option (C)
70. (D)

Intersection of the ellipse is possible if a>1
$\Rightarrow \mathrm{b}^{2}-5 \mathrm{~b}+7>1 \Rightarrow \mathrm{~b}^{2}-5 \mathrm{~b}+6>0 \Rightarrow \mathrm{~b} \in(-\infty, 2) \cup(3, \infty)$
71. (C)

$$
[\sin x]+[2 \cos x]=-3
$$

Possible if $[\sin x]=-1,[2 \cos x]=-2$
$\Rightarrow \quad-1 \leq \sin x<0,-2 \leq 2 \cos x<-1$
$\Rightarrow \pi<x<2 \pi$ and $\frac{2 \pi}{3}<x<\frac{4 \pi}{3} \Rightarrow \pi<x<\frac{4 \pi}{3}$
Now, $f(x)=\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$

Clearly the range of $f(x)$ is $[-\sqrt{2},-1)$
72.

(D)

Given equation is
$16 x^{2}-8 \pi x+\pi^{2}+16=|\tan x|$

Let $f(x)=16 x^{2}-8 \pi x+\pi^{2}+16$
and $g(x)=|\tan \mathrm{x}|$

$\Rightarrow \mathrm{f}(\mathrm{x})=16\left[\left(\mathrm{x}-\frac{\pi}{4}\right)^{2}+1\right]$
or $y=f(x)$ is an upward parabola with vertex $\left(\frac{\pi}{4}, 16\right)$
Now, from graph it is clear that $f(x)$ and $g(x)$ intersect at infinitely many points.
73. (B)

$$
\begin{aligned}
& m_{2}(x)=\min _{0 \leq t \leq x}\left(t^{2}+(x-t)^{2}\right)=\min _{0 \leq t \leq x} 2\left(\left(t-\frac{x}{2}\right)^{2}+\frac{x^{2}}{4}\right)=\frac{x^{2}}{2} \\
& m_{3}(x)=\min _{0 \leq t \leq x}\left(\frac{t^{2}}{2}+(x-t)^{2}\right)=\min _{0 \leq t \leq x} \frac{3}{2}\left(\left(t-\frac{2}{3} x\right)^{2}+\frac{2}{9} x^{2}\right)=\frac{x^{2}}{3}
\end{aligned}
$$

$$
m_{n}(x)=\frac{x^{2}}{n} \quad \therefore m_{n}\left(\frac{1}{\sqrt{n+1}}\right)=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

$$
\therefore \quad \sum_{n=1}^{k} m_{n}\left(\frac{1}{\sqrt{n+1}}\right)=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{k+1}=\frac{k}{k+1}
$$

74. (D)
$\mathrm{ae}=\sqrt{\sec ^{2} \theta-\tan ^{2} \theta}=1$
Distance between foci $=2$
75. (B)
$p_{1} p_{2}=\frac{a^{2} b^{2}}{a^{2}+b^{2}}=\frac{a^{2} \cdot a^{2}\left(e^{2}-1\right)}{a^{2} e^{2}}=6$
$\frac{2 a^{2}}{3}=6 \Rightarrow a^{2}=9 \Rightarrow a=3$
hence $2 \mathrm{a}=6$

76. (D)
$f(1)=-6$
for maximum at $x=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\tan ^{-1} \alpha-5<-6 \\
& \tan ^{-1} \alpha<-1 \Rightarrow \alpha<-\tan 1
\end{aligned}
$$

77. (B)

$$
\begin{aligned}
& x=\frac{b \cdot(a \cos \beta)-a(b \cos \alpha)}{b-a} \quad y=\frac{b \cdot(a \sin \beta)-a(b \sin \alpha)}{b-a} \\
& \Rightarrow \frac{x}{y}=\frac{\cos \beta-\cos \alpha}{\sin \beta-\sin \alpha} \\
& \Rightarrow \frac{x}{y}=\frac{2 \sin \left(\frac{\beta+\alpha}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)}{2 \cos \left(\frac{\beta+\alpha}{2}\right) \sin \left(\frac{\beta-\alpha}{2}\right)} \\
& \Rightarrow x \cos \left(\frac{\alpha+\beta}{2}\right)=-y \sin \left(\frac{\alpha+\beta}{2}\right) \\
& \therefore x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)=0
\end{aligned}
$$

78. (A)

Let $x=r \cos \theta$ and $y=r \sin \theta$, then $x^{2}+y^{2}=r^{2}$
Now $3 x^{2}-4 x y+2 y^{2}=12$
$\Rightarrow r^{2}\left(3 \cos ^{2} \theta-4 \cos \theta \sin \theta+2 \sin ^{2} \theta\right)=12$
$\Rightarrow r^{2}=\frac{24}{5+\cos 2 \theta-4 \sin 2 \theta}$
$\therefore \mathrm{m}=\frac{24}{5+\sqrt{17}}=3(5-\sqrt{17})$ and $\mathrm{n}=\frac{24}{5-\sqrt{17}}=3(5+\sqrt{17})$.
79. (C)

A rectangular hyperbola circumscribing a Δ also passes through its orthocentre
if $\left(\operatorname{ct}_{i}, \frac{c}{t_{i}}\right)$ where $i=1,2,3$ are the vertices of the Δ therefore orthocentre is
$\left(\frac{-c}{t_{1} t_{2} t_{3}},-c t_{1} t_{2} t_{3}\right)$, where $t_{1} t_{2} t_{3} t_{4}=1$. Hence orthocentre is $\left(-c t_{4}, \frac{-c}{t_{4}}\right)=\left(-x_{4},-y_{4}\right)$
80. (C)

$$
\begin{aligned}
& f(x)=\cos ^{2} x+\cos ^{2} 2 x+\cos ^{2} 3 x=1+\cos ^{2} x+\cos ^{2} 2 x-\sin ^{2} 3 x \\
&=1+\cos ^{2} x+\cos 5 x \cdot \cos x=1+\cos x(\cos x+\cos 5 x) \\
& \Rightarrow \cos x \cdot \cos 2 x \cdot \cos 3 x=0 \\
& \Rightarrow x=(2 n-1) \frac{\pi}{2} \text { or } x=(2 n-1) \frac{\pi}{4} \text { or } x=(2 n-1) \frac{\pi}{6} \\
& \Rightarrow \quad x=\frac{\pi}{2}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{6}, \frac{5 \pi}{6} \Rightarrow \text { no. of values of } x=5
\end{aligned}
$$

81. (D)

Tangent at ' t ' passes through (h, k)
$\therefore \mathrm{h}+\mathrm{kt}^{2}=2 \mathrm{ct}$ \qquad
$\&\left(-\frac{1}{t^{2}}\right) \cdot \frac{k}{x}=-1$
from (i) and (ii)
Locus is $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$
82. (D)

Let $\frac{y}{x}=\alpha$, then
α will be minimum or maximum when $y=\alpha x$
is a tangent to the ellipse
$x^{2}+x y+2 y^{2}-6 x-10 y+14=0$
Solving (1) and (2),

$$
\begin{aligned}
& \left(1+\alpha+2 \alpha^{2}\right) x^{2}-2(3+5 \alpha) x+14=0 \\
& D=0 \Rightarrow 4(3+5 \alpha)^{2}-56\left(1+\alpha+2 \alpha^{2}\right)=0 \\
& \Rightarrow 3 \alpha^{2}-16 \alpha+5=0 \Rightarrow \alpha=\frac{1}{3} \text { or } 5 \\
& \therefore \quad m=\frac{1}{3}, M=5
\end{aligned}
$$

83. (A)

We have, $\int \frac{1}{4 e^{-x}-9 e^{x}} d x=\int \frac{e^{x}}{4-9 e^{2 x}} d x$

$$
\begin{aligned}
& =\int \frac{e^{x}}{2^{2}-\left(3 e^{x}\right)^{2}} d x=\frac{1}{3} \int \frac{3 e^{x}}{2^{2}-\left(3 e^{x}\right)^{2}} d x=\frac{1}{3} \int \frac{1}{2^{2}-\left(3 e^{x}\right)^{2}} d\left(3 e^{x}\right)\left[\because d\left(3 e^{x}\right)=3 e^{x} d x\right] \\
& =\frac{1}{3} \int \frac{d t}{2^{2}-t^{2}}, \text { where } t=3 e^{x} \\
& =\frac{1}{3} x \frac{1}{2 \times 2} \log \left|\frac{2+t}{2-t}\right|+c=\frac{1}{12} \log \left|\frac{2+3 e^{x}}{2-3 e^{x}}\right|+c
\end{aligned}
$$

84. (C)
radius of the first circle is half of the second circle.
\Rightarrow Triangle is equilateral. \Rightarrow Incentre and circumcentre coincides.
$\Rightarrow \alpha-2 \beta=1$ and $\alpha+\beta=2 \quad \Rightarrow(\alpha, \beta) \equiv\left(\frac{5}{3}, \frac{1}{3}\right)$
85. (B)

The locus is $\frac{x^{2}}{16}-\frac{y^{2}}{48}=1 \Rightarrow e=\sqrt{\frac{16+48}{16}}=2$
86. (B)
$f^{\prime}(x)=5^{x}+7^{x}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=5^{\mathrm{x}} \ell \mathrm{n} 5+7^{\mathrm{x}} \ell \mathrm{n} 7>0$
i.e $f^{\prime}(x)$ is \uparrow

Maximum slope $=5^{2}+7^{2}=74$
87. (D)

P: $(a \sec \theta, a \tan \theta) ; N:[(a / 2)(\sec \theta+\tan \theta),(a / 2)(\sec \theta+\tan \theta)]$
$\Rightarrow 4 \mathrm{~h} / \mathrm{a}=2 \sec \theta+\tan \theta \& 4 \mathrm{k} / \mathrm{a}=\sec \theta+2 \tan \theta \Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}=3 \mathrm{a}^{2} / 16$
88. (C)

$$
\begin{aligned}
& y^{2}-2 y+1=4 x^{2} \\
& \Rightarrow(y-1)^{2}=4 x^{2} \Rightarrow y-1=2 x,-2 x
\end{aligned}
$$

89. (B)

$$
\begin{aligned}
& y-y_{i}=\left(\frac{d y}{d x}\right)_{\left(x_{i}, y_{i}\right)}\left(x-x_{1}\right) \\
& -y_{i}=\frac{-y_{i}}{2 x_{i}}\left(x_{i+1}-x_{i}\right) \\
& x_{i+1}-x_{i}=2 x_{i} \\
& x_{i+1}=3 x_{i}
\end{aligned}
$$

90. (C)

If ' O ' be the circumcentre then
$O P+O R>P R \geq A D=10$
Also a circle through ABCD has radius $5 \sqrt{2}$.

