SOLUTIONS WEEKLY TEST-A RBA & RBPA (JEE ADVANCED PATTERN) Test Date: 25-11-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01 Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20 Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd., Bazar Samiti Patna-06 Call : 9569668800 | 7544015993/4/6/7

5.
$$F_x = -\frac{dU}{dx} = 7 \implies a_x = \frac{F_x}{m} = \frac{7}{5}$$

$$F_y = -\frac{dU}{dx} = -24 \implies a_y = \frac{F_y}{m} = \frac{-24}{5}$$

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{24}{5}\right)^2} = 5 \text{ m/s}^2$$

$$\vec{a} = \left(\frac{7}{5}\right)\hat{i} - \left(\frac{24}{5}\right)\hat{j} \text{ and } \vec{v} = 14.4\hat{i} + 4.2\hat{j}$$

$$\vec{a}.\vec{v} = \frac{7}{5} \times 14.4 - \frac{24}{5} \times 4.2 = 0$$
Hence \vec{a} is perpendicular to \vec{v} .

$$V_x = u_x + a_z t \qquad V_y = v_y + a_y t$$

$$V_x = 14.4 + \left(\frac{7}{5}\right)^4 \qquad V_y = (4.2) - \left(\frac{24}{5}\right)^4$$

$$v = \sqrt{V_x^2 + V_y^2} = 25 \text{ m/s}$$

$$\therefore \quad (A) (B) (C) \& (D)$$
6.
$$F = \frac{-K}{r}$$
where K is proportionally constant.

$$\frac{mV^2}{r} = \frac{-K}{r} \quad i.e_x, V \propto r^0$$

$$T = \frac{2\pi r}{V} = \frac{2\pi r}{\sqrt{\frac{K}{m}}} \quad i.e., T \propto r$$
So choices (a) and (d) are wrong and choices (b) and (c) are correct.

$$\therefore \quad (B) \text{ and } (C)$$
7. (B, C, D)
8. (A)

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

In the second case :

Velocity of rain as observed by man becomes $\sqrt{3}$ times in magnitude.

... New velocity of rain

$$\vec{V}_{R'} = \vec{V}_{R'M} + \vec{V}_M$$

 \therefore The angle rain makes with vertical is

$$\tan \theta = \frac{10}{10\sqrt{3}}$$
 or $\theta = 30^{\circ}$

 \therefore Change in angle of rain = 45 – 30 = 15°.

(A- r) ; (B -q) ; (C-s) ; (D - p)

(A)
$$F = K(3q)q \frac{\sqrt{\frac{2}{3}}(2a)}{8a^3} = \frac{1}{2}\sqrt{\frac{3}{2}} \frac{Kq^2}{a^2}$$

(B)
$$F = 2 \frac{Kq^2}{(2a)^2} \times \cos 45^\circ + \frac{Kq^2}{(2\sqrt{2}a)^2} = \frac{Kq^2}{8a^2}(2\sqrt{2}+1)$$

(C) Putting addinional charge 'q' on D

 \therefore $F_{net} = F_A + 2F_C \cos 60^\circ$

$$=\frac{2Kq^2}{4a^2} + \frac{2Kq^2}{a^2}$$
$$=\frac{5}{2}\frac{Kq^2}{a^2}$$

(D)
$$F = q.E = q.5Kq \frac{a}{(\sqrt{2}a)^3}$$
$$= \frac{5}{2\sqrt{2}} \left(\frac{Kq^2}{a^2}\right).$$

10 m/s

10/3m/s

 $\overline{V}_{R'N}$

V_M

 $\rightarrow \overrightarrow{V}_{M}$

[6]		WI-A (ADV) RBA & RBPA_25.11.2017	
18. ((C)		
	(A - R); (B - P), (C – S); (D – Q)		
I	If S_1 is closed, then $\frac{kQ_A}{a} + \frac{kQ}{2a} = 0$	$Q_A = -\frac{Q}{2}$	
I	If S_2 is closed, then $\frac{kQ_B}{2a} = 0$	$Q_{_B} = 0$	
I	If S_3 is closed, then $\frac{kQ}{3a} + \frac{kQ_C}{3a} = 0$	$Q_c = -Q$	
19. (If S_4 is closed, charge on shell <i>B</i> is <u>Q</u> (B)		
((A-s), (B-p), (C-r), (D-q)		
-	The initial velocity of A relative to B is $\vec{u}_{AB} = \vec{u}_A - \vec{u}_B = (8\hat{j} - 8\hat{j}) \text{ m/s}$ $\therefore u_{AB} = 8\sqrt{2} \text{ m/s}$		
/	Acceleration of A relative to B is -		
	$\vec{a}_{AB} = \vec{a}_A - \vec{a}_B = (-2\hat{i} + 2\hat{j}) \text{ m/s}^2 \therefore a_{AB} = 2\sqrt{2} \text{ m/s}^2$		
: 	since B observes initial velocity and consta Hence B observes A moving along a straigh	ant acceleration of A in opposite directions, t line.	
	From frame of B		
I	Hence time when $v_{AB} = 0$ is $t = \frac{u_{AB}}{a_{AB}} = 4$ sec		
-	The distance between A & B when $v_{AB} = 0$ is $S = \frac{u_{AB}^2}{2a_{AB}} = 16\sqrt{2}$ m		
-	The time when both are at same position is -		
-	$T = \frac{2u_{AB}}{a_{AB}} = 8 \text{ sec.}$		
I	Magnitude of relative velocity when they are at same position in $u_{AB} = 8\sqrt{2}$ m/s.		
20.	(D)		
((A-q), (B-r), (C-q), (D-r)		
I	Let a be acceleration of two block system towards right		
	$\therefore a = \frac{F_2 - F_1}{m_1 + m_2}$	a —	
-	The F.B.D. of m_2 is	\leftarrow m_2 \rightarrow F_2	
	$\therefore F_2 - T = m_2 a$		

Solving T = $\frac{m_1 m_2}{m_1 + m_2} \left(\frac{F_2}{m_2} + \frac{F_1}{m_1} \right)$ (B) Replace F_1 by $-F_1$ is result of A \therefore T = $\frac{m_1m_2}{m_1 + m_2} \left(\frac{F_2}{m_2} - \frac{F_1}{m_1} \right)$ (C) Let a be acceleration of two block system towards left $\therefore \mathbf{a} = \frac{\mathbf{F}_2 - \mathbf{F}_1}{\mathbf{m}_1 + \mathbf{m}_2}$ The FBD of m₂ is $\therefore F_2 - N_2 = m_2 a$ Solving N = $\frac{m_1 m_2}{m_1 + m_2} \left(\frac{F_1}{m_1} + \frac{F_2}{m_2} \right)$ (D) Replace F_1 by $-F_1$ in result of C $N = \frac{m_1 m_2}{m_1 + m_2} \left(\frac{F_2}{m_2} - \frac{F_1}{m_1} \right)$ CHEMISTRY 21. (A), (C) 22. (B), (C), (D) 23. (B) The velocity corresponding to the maxima is the most probable velocity which is given by the expression. $C_{mp} = \sqrt{\frac{2RT}{M}}$ $RT = \frac{C_{mp}^2 M}{2} = \frac{(200)^2 \times 100 \times 10^{-3}}{2} = 40000 \times 50 \times 10^{-3} \text{ J mol}^{-1} = 40 \times 50 \text{ J mol}^{-1}$ No. of moles = $\frac{300}{100} = 3$ $E = \frac{3}{2}nRT = \frac{3}{2} \times 3 \times 40 \times 50 = 9 \times 10^{3} J = 9 kJ$ 24. (A), (B), (C)

Mentors Eduserv

37. (B) (A - Q); (B - S); (C - P); (D - R)The given equilibrium is $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $K_{\rm C} = \frac{[{\rm SO}_3]^2}{[{\rm SO}_2]^2 [{\rm O}_2]}$... (i) (A) If $[SO_3] = [SO_2]$ Then $K_C = \frac{1}{[O_2]}$ $[O_2] = \frac{1}{K_C} = \frac{1}{100} = 0.01$ mole/litre Total moles of O_2 present = 0.01 \times 10 = 0.1 mole ·· Volume of vessel is 10 litre (B) When $[SO_3] = 2[SO_2]$ Then $K_{c} = \frac{[SO_{2}]^{2}}{[SO_{2}]^{2}[O_{2}]}$ from Eq. (i) $100 = \frac{4}{[O_2]}$ $[O_2] = 4/100 = 0.04$ mole/litre Total moles of O_2 in vessel at equilibrium = 0.04 \times 10 = 0.4 mole (C) When $[SO_3] = 3[SO_2]$ Then $K_{C} = \frac{[SO_{2}]^{2}}{[SO_{2}]^{2}[O_{2}]}$ from Eq. (i) $100 = \frac{4}{[O_2]}$ $[O_2] = 9/100 = 0.09$ mole/litre Total moles of O_2 in vessel at equilibrium = 0.09 \times 10 = 0.9 mole (D) When $[SO_3] = 0.5[SO_2]$ Then $K_{C} = \frac{[SO_{2}]^{2}}{[SO_{2}]^{2}[O_{2}]}$ from Eq. (i) $100 = \frac{4}{[O_2]}$

MATHEMATICS

41. (A, C) $f(x) = \frac{x^3}{3} + \frac{x^2}{2} + x + 2 \implies f'(x) = x^2 + x + 1$ so f(x) is always increasing so, minimum of f(g(x)) will concide with minima of g(x). 42. (A, B, C, D) Here $f'(x) > 0, \forall x \in \mathbb{R}$ \Rightarrow f(x) is increasing function Also $f(-x) = -f(x) \Rightarrow f(x)$ is odd function Now $\alpha + \beta > 0 \implies \alpha > -\beta$ $\Rightarrow f(\alpha) > f(-\beta) \Rightarrow f(\alpha) > -f(\beta) \Rightarrow f(\alpha) + f(\beta) > 0$ Also, $\alpha + \beta < 0 \Rightarrow f(\alpha) < -f(\beta)$ \Rightarrow f(α) + f(β) < 0 43. (A, B, C) н s' Н (A) Clearly 'O' is the mid point of SS' and HH' (B) AA' = SH' + S'H' = SH' + SH = PP' = 2a (say) \therefore OH' = ae', OS = ae $H'(ae'\cos\theta, ae'\sin\theta)$ lies on $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \implies \theta = \cos^{-1} \sqrt{\frac{e^{2} + e^{\prime 2} - 1}{e^{2} e^{\prime 2}}} \implies \theta = \frac{\pi}{2} \text{ if } e^{2} + e^{\prime 2} = 1$ (C) HH' = SS', if e' = e

44.	(A, B, C)	
	Curve through the intersection of S_1 and S_2 is given by $S_1 + \lambda S_2 = 0$	
	$\Rightarrow x^{2}(\sin^{2}\theta + \lambda\cos^{2}\theta) + 2(h\tan\theta - \lambda h'\cot\theta)xy + (\cos^{2}\theta + \lambda\sin^{2}\theta)y^{2}$	
	$+(32+16\lambda)x+(16+32\lambda)y+19(1+\lambda)=0$	
45.	(A, B, C, D)	
	Given that either $px^2 + qy^2 + r = 0$ or $(x - 1)^2 + y^2 = 1$	
	(i) two straight lines if $r = 0$ and $p q < 0$	
	(ii) circle, if p = 1 and r is of opposite sign to that of p	
	(iii) a hyperbola if $pq < 0$ and $r \neq 0$	
	(iv) a circle and an ellipse if $pq > 0$ and $p \neq q$ and $pr < 0$	
46.	46. (B, D)	
	f(x) is undifined at $x = -2$	
	\Rightarrow g(f(x)) is also undefined at x = -2	
	Also g(x) is undefined at $x = \pm 1$, $n\pi$ $(n \in I)$	
	Now $f(x) = 1 \Longrightarrow \frac{2x+1}{x+2} = 1 \Longrightarrow x = 1$	
	$f(x) = -1 \Longrightarrow \frac{2x+1}{x+2} = -1 \Longrightarrow x = -1$	
	$f(x) = n\pi \Longrightarrow \frac{2x+1}{x+2} = n\pi \Longrightarrow x = \frac{2n\pi - 1}{2 - n\pi} \qquad \{n \in I\}$	
47.	(A, B, D)	
	Since, $\sin^2\left(\frac{A}{2}\right) + \sin^2\left(\frac{B}{2}\right) + \sin^2\left(\frac{C}{2}\right) =$	
	$\frac{1}{2} [3 - (\cos A + \cos B + \cos C] = \frac{3}{2} - \frac{1}{2} (\cos A + \cos B + \cos C)$	
	but the maximum value of $\cos A + \cos B + \cos C = \frac{3}{2}$	
	$\therefore \text{ minimum value of } \sum \sin^2 \left(\frac{A}{2}\right) = \frac{3}{2} - \frac{3}{4} = \frac{3}{4}$	
	$\therefore \sum \sin^2 \left(\frac{A}{2}\right) \ge \frac{3}{4} \text{ hence (c) is incorrect.}$	
	and (A), (B) and (D) are correct and hold good in any triangle	

48. (A, D)
Let the parabolas be
$$y^2 = 4a(x-k)$$
 and $y^2 = -4b(x+k)$.
A line parallel to common axis is $y = h$
Let $A = \left(\frac{h^2}{4a} + k, h\right)$, $B = \left(-k - \frac{h^2}{4b}, h\right)$.
If $P(\alpha, \beta)$ is the mid point of AB, then
 $\alpha = \frac{4}{2}\left(\frac{h^2}{4a} + k - k - \frac{h^2}{4b}\right)$ and $\beta = h$.
 $\therefore 2\alpha = \frac{h^2}{4}\left(\frac{1}{a} - \frac{1}{b}\right) \Rightarrow 2\alpha = \frac{\beta^2}{4}\left(\frac{b-a}{ba}\right)$
 \therefore Locus of P is $2x = \frac{y^2}{4}\left(\frac{b-a}{ba}\right)$
49. (B)
 $a = 1$
 $f(x) = 8x^3 + 4x^2 + 2bx + 1$
 $f'(x) = 24x^2 + 8x + 2b = 2(12x^2 + 4x + b)$
for increasing function, $f'(x) \ge 0 \quad \forall x \in \mathbb{R}$
 $\therefore D \le 0 \qquad \Rightarrow 16 - 48b \le 0 \qquad \Rightarrow b \ge \frac{1}{3}$
 $\therefore \lambda = \frac{1}{3}$
50. (A)
if $b = 1$
 $f(x) = 8x^3 + 4x^2 + 2x + a$
 $f'(x) = 24x^2 + 8ax + 2 \text{ or } 2(12x^2 + 4ax + 1)$
for nonmononic, $f'(x) \ge 0$ must have distinct roots
hence $D > 0$ i.e. $16a^2 - 4b > 0 \Rightarrow a^2 > 3$; $\therefore a > \sqrt{3}$ or $a < -\sqrt{3}$
 $\therefore a \in \{2, 3, 4, \dots,\}$
sum of squares = 338350 - 1 = 338349

[13]

114]
WT-A (ADV) RBA & RBPA 25.11.2017
51. (A)
S₁ =
$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$

So distance between foci = 2ae then OA = ae
Let slope of OA is tan α then co-ordinate of
A (ae cos α , ae sin α) which lies on S₁
So, $e^2 \cos^2 \alpha + \frac{e^2 \sin^2 \alpha}{1-e^2} = 1$
 $\Rightarrow e^2 - e^4 \cos^2 \alpha - 1 - e^2$
 $\Rightarrow \cos^2 \alpha = \frac{2e^2 - 1}{e^4} \Rightarrow 0 \le \frac{2e^2 - 1}{e^4} \le 1 \Rightarrow 2e^2 - 1 \ge 0$ and $2e^2 - 1 \le e^4$
 $\Rightarrow e^2 \ge \frac{1}{2}$ and $(e^2 - 1)^2 \ge 0$ \Rightarrow Minimum value of $e^2 = \frac{1}{2}$
52. (C)
Now $\tan \theta = \frac{a}{b} \tan \alpha = \frac{a}{a\sqrt{1-e^2}} \times \frac{1-e^2}{\sqrt{2e^2-1}} = \sqrt{\frac{1-e^2}{2e^2-1}}$ then $\sin \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = \frac{1-e^2}{\frac{2e^2-1}{2e^2-1}} = \frac{1-e^2}{e^2}$
53. (A)
 $y^2 = x^2 - 9a^2$ and $x^2 + y^2 + 2gx + 2fy + c = 0$
 $\Rightarrow 2x^2 + 2gx + (c - 9a^2) = -2fy$
Squaring both sides,
 $4x^4 + 4g^2x^2 + (c - 9a^2)^2 + 8gx^3 + 4gx(c - 9a^2) + 4x^2(c - 9a^2) - 4f^2x^2 + 36f^2a^2 = 0$
 x_1, x_2, x_3, x_4 are the roots of the above equation.
 $\therefore x_1 + x_2 + x_3 + x_4 = \frac{-8g}{4} \Rightarrow x_1 + x_2 + x_3 = -2g - x_4$
Similarly, $y_1 + y_2 + y_3 = -2f - y_4$. \therefore centroid of $\triangle PQR$ is $\left(\frac{-2g - x_4}{3}, \frac{-2f - y_4}{3}\right)$.
54. (A)
Let $x = \frac{-2g - x_4}{3}$ and $y = \frac{-2f - y_4}{3}$, then

 $3x + 2g = -x_4$ and $3y + 2f = -y_4$ $x_4^2 - y_4^2 = 9a^2 \implies (3x + 2g)^2 - (3y + 2f)^2 = 9a^2$ 55. (C) $f''(c_2)f''(c_1) < 0$ and $f'(c_1) = f'(c_2) = 0$ $f''(c_1) - f''(c_2) > 0 \implies f''(c_1) > 0 \text{ and } f''(c_2) < 0$ \Rightarrow c₂ is point of local maximum and c₁ is point of local minimum for f(x) \Rightarrow f'(x) = 0 at least four times in [c₁ - 1, c₂ + 1]. 56. (B) Here $\boldsymbol{c}_{_1}$ is local maximum and $\boldsymbol{c}_{_2}$ is local minimum \Rightarrow f'(x) = 0 has at least two roots in [c₁ - 1, c₂ + 1]. 57. (C) (P) $f'(x) = -2\sin x + a \ge 0 \forall x$ (Q) $f'(x) = a^2 - \sin x \ge 0$ $|a| \ge 1 \Rightarrow a \in (-\infty, -1] \cup [1, \infty)$ (R) Product of slopes is (-1) $a^2 = 2$ $a = \pm \sqrt{2}$ (S) $\lim_{x\to 0} (1 + a \sin x)^{\cos ex} = \frac{1}{\sqrt{e}}$ $=e^{a}=\frac{1}{\sqrt{e}}$ $\Rightarrow a = -\frac{1}{2}$ 58. (A) (P) $f'(x) = 3ax^2 - 18x + 9 = 3(ax^2 - 6x + 3)$ As f (x) is strictly increasing on R, so a > 0 and D \leq 0 \Rightarrow a \geq 3

(Q) Put cos x = t.t ∈ [-1,1] ∀x ∈ R
Let g(t) = t³ - 6t² + 11t - 6 = (t - 1)(t - 2)(t - 3), t ∈ [-1,1]
∴ range of g(t) = [g(-1), g(1)] = [-24, 0]
(R) x³ - y² = 0

$$\frac{dy}{dx} \Big]_{q(un2, an2)} = \frac{3 \times 16m^4}{16m^3} = 3m$$

Let Q be $(4m_1^2, 8m_1^3)$
∴ Slope of normal at Q = $\frac{-1}{3m_1}$
∴ $3m = \frac{-1}{3m_1} \Rightarrow m_1 = \frac{-1}{9m}$... (1)
Also, slope of PQ = $\frac{8(m^3 - m_1^3)}{4(m^2 - m_1^2)} = \frac{2(m^2 + m_1^2 + mm_1)}{m + m_1} = 3m$
 $\Rightarrow (2m_1 + m)(m_1 - m) = 0$
 $\Rightarrow 2\Big(\frac{-1}{9m}\Big) + m = 0 \Rightarrow m^2 = \frac{2}{9}$
(S) (sin 0 - cos 0) (tan 0 + cot 0) = 2
 $\Rightarrow \frac{sin 0 - cos 0}{sin 0 cos 0} = 2$
Let y = sin 0 - cos 0
 $\therefore y = 1 - y^2 \Rightarrow y^2 + y - 1 = 0 \Rightarrow y = \frac{-1 \pm \sqrt{5}}{2}$
S9. (B)
(P) Common tangent $y = x + 2\sqrt{2}$ point of contact with two hyperbola are $\Big(\frac{-9}{2\sqrt{2}}, \frac{-1}{2\sqrt{2}}\Big)$ and $\Big(\frac{1}{2\sqrt{2}}, \frac{9}{2\sqrt{2}}\Big)$ hence length = 5

Mentors[®] Eduserv[™]

[16]

(Q) For hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ S is (ae, 0) equation of line $y = \frac{b}{a}(x - ae)$, $P\left(\frac{a^2(1 + e^2)}{2ae}, \frac{-ab(e^2 - 1)}{2ae}\right)$. \therefore SP = $\frac{b^2}{2a} = \frac{9}{8}$ (R) Equation of tangent $\frac{x\cos\theta}{2\sqrt{3}} + \frac{y\sin\theta}{18} = 1$ Sum of intercept is $f(\theta) = 2\sqrt{3} \sec \theta + 18 \csc \theta$ $\Rightarrow f'(\theta) = \frac{2\sqrt{3}\sin^3\theta - 18\cos^3\theta}{\sin^2\theta\cos^2\theta}$ For max./min. $f'(\theta) = 0$ $\tan^3 \theta = 3\sqrt{3} \implies \tan \theta = \sqrt{3}$ (S) Equation of tangent at (x_1, y_1) is $xx_1 - 2yy_1 = 4$ which is same as $2x + \sqrt{6}y = 2$ Hence $\frac{x_1}{2} = \frac{-2y_1}{\sqrt{6}} = \frac{4}{2}$ $x_1 = 4, y_1 = -\sqrt{6}$ m = slope of line = $\frac{-\sqrt{6}}{4} \Rightarrow 4m = -\sqrt{6}$ 60. (A) (P) $\frac{x-4}{5} = \frac{y+13}{1} = \frac{-2(20-13+6)}{26}$ x = -1, v = -14(Q) $|a| \in (1, \sqrt{2})$ (R) Equation of circle passes though origin and touching the line y = x is $x^2 + y^2 + \lambda(y - x) = 0$ therefore according to quesiton equation of common chord will be $(6x + 8y - 7) + \lambda (x - y) = 0$ and this common chord always passes though the point (1/2, 1/2)(S) The point at shortest distance form the line and lying on the circle is (2, 1) [17]