SOLUTIONS

 WEEKLY TEST-A

 WEEKLY TEST-A RBA \& RBPA

 (JEE ADVANCED PATTERN)

 (JEE ADVANCED PATTERN)
 Test Date: 25-11-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01 Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

PHYSICS

1. (A, B)
(C) Charges are unequal, but repulsion force will be $\frac{K(q)(3 q)}{r^{2}}$ for both the spheres. As weight of both balls are same, so both will deflect equally.
$(A, D) \rightarrow$ If the ball is heavier, it will deflect less.
2. (A, B, C, D)

Since net force on negative charge is always directed towards fixed positive charge, the torque on negative charge about positive charge is zero. Therefore angular momentum of negative charge about fixed positive charge is conserved.
3. Total height $=\frac{1}{2} \times 10 \times(60)^{2}+\frac{(10 \times 60)^{2}}{2 \times 10}=36000 \mathrm{~m}=36 \mathrm{~km}$

Total time $=60+60+\sqrt{\frac{2 \times 36000}{10}}$

$$
\begin{aligned}
& =60 s+60 s+60 \sqrt{2} s \\
& =(120+60 \sqrt{2}) \mathrm{s}
\end{aligned}
$$

\therefore (B) (D)
4. From FBD of A with respect to B
$a_{v}=0$
$m g=N-m a \sin \theta$
$\Rightarrow \quad N=m g-m a \sin \theta$
$m a \cos \theta=m a_{H} \Rightarrow a_{H}=a \cos \theta$

If block B is having friction then, for $a_{H}=0$
$m a \cos \theta \leq \mu N=\mu(m g-m a \sin \theta)$
$\mu \geq \frac{a \cos \theta}{g-a \sin \theta}$
\therefore (B) (D)
5. $\quad F_{x}=-\frac{d U}{d x}=7 \Rightarrow a_{x}=\frac{F_{x}}{m}=\frac{7}{5}$

$$
F_{y}=-\frac{d U}{d x}=-24 \Rightarrow a_{y}=\frac{F_{y}}{m}=\frac{-24}{5}
$$

$a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{\left(\frac{7}{5}\right)^{2}+\left(\frac{24}{5}\right)^{2}}=5 \mathrm{~m} / \mathrm{s}^{2}$
$\vec{a}=\left(\frac{7}{5}\right) \hat{i}-\left(\frac{24}{5}\right) \hat{j}$ and $\vec{v}=14.4 \hat{i}+4.2 \hat{j}$
$\vec{a} \cdot \vec{v}=\frac{7}{5} \times 14.4-\frac{24}{5} \times 4.2=0$
Hence \vec{a} is perpendicular to \vec{v}.

$$
\begin{array}{ll}
V_{x}=u_{x}+a_{x} t & V_{y}=v_{y}+a_{y} t \\
V_{x}=14.4+\left(\frac{7}{5}\right)^{4} & V_{y}=(4.2)-\left(\frac{24}{5}\right)^{4} \\
v=\sqrt{V_{x}^{2}+V_{y}^{2}}=25 \mathrm{~m} / \mathrm{s} \\
\therefore & \text { (A) (B) (C) \& (D) }
\end{array}
$$

6. $F=\frac{-K}{r}$
where K is proportionally constant.
$\frac{m V^{2}}{r}=\frac{-K}{r}$ i.e., $V \alpha r^{0}$
$T=\frac{2 \pi r}{V}=\frac{2 \pi r}{\sqrt{\frac{K}{m}}}$ i.e., $T \alpha r$.
So choices (a) and (d) are wrong and choices (b) and (c) are correct.

$$
\therefore \quad(B) \text { and }(C)
$$

7. (B, C, D)
8. (A)
9. (D)

$$
E=\frac{\sigma}{\varepsilon_{0} k}=\frac{5 \times 10^{-4}}{8.85 \times 10^{-12} \times 5.4}=10^{7} \mathrm{Vm}^{-1}
$$

\therefore (D)
10. (C)
$V=E d=10^{7} \times 5 \times 10^{9}=0.05 \mathrm{~V}$
\therefore (C)
11. (B)
12. (C)
13. (B)

From above

$$
\begin{aligned}
& 2 t=\frac{t^{3}}{6} \\
\Rightarrow & t^{2}=12 \\
\Rightarrow \quad & t=2 \sqrt{3} \mathrm{sec} .
\end{aligned}
$$

14. (C)

Sol. $a=t=4$
$\therefore \quad$ after 4 seconds $V_{B}=2 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{p}}=\frac{4^{2}}{2}=8 \mathrm{~m} / \mathrm{s} \\
\therefore \quad & \mathrm{~V}_{\text {rel }}=8-2=6 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

15. (A)
16. (B)

In the first case :
From the figure it is clear that
$\vec{V}_{R M}$ is $10 \mathrm{~m} / \mathrm{s}$ downwards and
\vec{V}_{M} is $10 \mathrm{~m} / \mathrm{s}$ towards right.

In the second case :

Velocity of rain as observed by man becomes $\sqrt{3}$ times in magnitude.
$\therefore \quad$ New velocity of rain

$$
\vec{V}_{R^{\prime}}=\vec{V}_{R^{\prime} M}+\vec{V}_{M}
$$

$\therefore \quad$ The angle rain makes with vertical is

$$
\tan \theta=\frac{10}{10 \sqrt{3}} \text { or } \theta=30^{\circ}
$$

\therefore Change in angle of rain $=45-30=15^{\circ}$.

17. (A)
(A-r) ; (B-q) ; (C-s) ; (D-p)
(A) $F=K(3 q) q \frac{\sqrt{\frac{2}{3}}(2 a)}{8 a^{3}}=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{K q^{2}}{a^{2}}$
(B) $F=2 \frac{\mathrm{Kq}^{2}}{(2 \mathrm{a})^{2}} \times \cos 45^{\circ}+\frac{\mathrm{Kq}^{2}}{(2 \sqrt{2} \mathrm{a})^{2}}=\frac{\mathrm{Kq}^{2}}{8 \mathrm{a}^{2}}(2 \sqrt{2}+1)$
(C) Putting addinional charge ' q ' on D

$\therefore F_{\text {net }}=F_{A}+2 F_{C} \cos 60^{\circ}$
$=\frac{2 K q^{2}}{4 a^{2}}+\frac{2 K q^{2}}{a^{2}}$
$=\frac{5}{2} \frac{\mathrm{Kq}^{2}}{\mathrm{a}^{2}}$
(D) $F=q \cdot E=q \cdot 5 K q \frac{a}{(\sqrt{2} a)^{3}}$
$=\frac{5}{2 \sqrt{2}}\left(\frac{K q^{2}}{a^{2}}\right)$.
18. (C)
$(A-R) ;(B-P),(C-S) ;(D-Q)$
If S_{1} is closed, then $\frac{k Q_{A}}{a}+\frac{k Q}{2 a}=0 \quad Q_{A}=-\frac{Q}{2}$
If S_{2} is closed, then $\frac{k Q_{B}}{2 a}=0$
$Q_{B}=0$
If S_{3} is closed, then $\frac{k Q}{3 a}+\frac{k Q_{C}}{3 a}=0$
$Q_{C}=-Q$
If S_{4} is closed, charge on shell B is \underline{Q}
19. (B)
(A-s), (B-p), (C-r), (D-q)
The initial velocity of A relative to B is $\vec{u}_{A B}=\vec{u}_{A}-\vec{u}_{B}=(8 \hat{i}-8 \hat{j}) \mathrm{m} / \mathrm{s} \quad \therefore u_{A B}=8 \sqrt{2} \mathrm{~m} / \mathrm{s}$
Acceleration of A relative to B is -
$\vec{a}_{A B}=\vec{a}_{A}-\vec{a}_{B}=(-2 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{2} \quad \therefore a_{A B}=2 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$
since B observes initial velocity and constant acceleration of A in opposite directions, Hence B observes A moving along a straight line.
From frame of B
Hence time when $v_{A B}=0$ is $t=\frac{u_{A B}}{a_{A B}}=4 \mathrm{sec}$.
The distance between $A \& B$ when $v_{A B}=0$ is $S=\frac{u_{A B}^{2}}{2 a_{A B}}=16 \sqrt{2} \mathrm{~m}$
The time when both are at same position is -
$\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{AB}}}{\mathrm{a}_{\mathrm{AB}}}=8 \mathrm{sec}$.
Magnitude of relative velocity when they are at same position in $\mathrm{u}_{\mathrm{AB}}=8 \sqrt{2} \mathrm{~m} / \mathrm{s}$.
20. (D)
(A-q), (B-r), (C-q), (D-r)
Let a be acceleration of two block system towards right
$\therefore \mathrm{a}=\frac{\mathrm{F}_{2}-\mathrm{F}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
The F.B.D. of m_{2} is

$$
\therefore \mathrm{F}_{2}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}
$$

Solving $T=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{2}}{m_{2}}+\frac{F_{1}}{m_{1}}\right)$
(B) Replace F_{1} by $-F_{1}$ is result of A

$$
\therefore \mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\frac{\mathrm{~F}_{2}}{\mathrm{~m}_{2}}-\frac{\mathrm{F}_{1}}{\mathrm{~m}_{1}}\right)
$$

(C) Let a be acceleration of two block system towards left

$$
\therefore \mathrm{a}=\frac{\mathrm{F}_{2}-\mathrm{F}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

The FBD of m_{2} is

$$
\therefore \mathrm{F}_{2}-\mathrm{N}_{2}=\mathrm{m}_{2} \mathrm{a}
$$

Solving $N=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{1}}{m_{1}}+\frac{F_{2}}{m_{2}}\right)$
(D) Replace F_{1} by $-F_{1}$ in result of C

$$
N=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{2}}{m_{2}}-\frac{F_{1}}{m_{1}}\right)
$$

CHEMISTRY
21. (A), (C)
22. (B), (C), (D)
23. (B)

The velocity corresponding to the maxima is the most probable velocity which is given by the expression.
$C_{m p}=\sqrt{\frac{2 R T}{M}}$
$R T=\frac{C_{m p}^{2} \mathrm{M}}{2}=\frac{(200)^{2} \times 100 \times 10^{-3}}{2}=40000 \times 50 \times 10^{-3} \mathrm{~J} \mathrm{~mol}^{-1}=40 \times 50 \mathrm{~J} \mathrm{~mol}^{-1}$
No. of moles $=\frac{300}{100}=3$
$E=\frac{3}{2} n R T=\frac{3}{2} \times 3 \times 40 \times 50=9 \times 10^{3} \mathrm{~J}=9 \mathrm{~kJ}$
24. (A), (B), (C)
25. (A), (B), (D)

(1S, 2S)
(I)

(II)

(1R, 2S)
(III)

(1R, 2S)
(IV)

Compound (I) and (II) are optically active, so can not have plane of symmetry as well as centre of symmetry, (III) and (IV) are optically inactive and possess centre of symmetry not plane of symmetry (II) has two fold axis of symmetry but (III) has no axis of symmetry.
26. (A), (B)
(A) Ester is poor - M group
(B)
 has higher enol content due to active methylene group
27. (A), (B), (C), (D)
(I) and (II) do not have chiral centres, but these are geometrical isomers. (I) is cis while (II) is trans isomers. (III) and (IV) are geometrical isomer and each have two chiral centres, so these are also optical isomers.
Since, Geometrical isomers are diastereomers. So, (I) and (II) as well as (III) and (IV) are diastereomers.
28. (A), (B), (C)
29. (D)
30. (B)
31. (A)
32. (A)
33. (B)

In B most stable cation is formed hence maximum rate of reaction.
34. (C)

Step-1 is r.d.s and Step-2 is fast reaction.
35. (C)
36. (D)
37. (B)
($\mathrm{A}-\mathrm{Q}$); $(\mathrm{B}-\mathrm{S})$; $(\mathrm{C}-\mathrm{P}) ;(\mathrm{D}-\mathrm{R})$
The given equilibrium is
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
(A) If $\left[\mathrm{SO}_{3}\right]=\left[\mathrm{SO}_{2}\right]$

Then $\mathrm{K}_{\mathrm{C}}=\frac{1}{\left[\mathrm{O}_{2}\right]}$
$\left[\mathrm{O}_{2}\right]=\frac{1}{\mathrm{~K}_{\mathrm{C}}}=\frac{1}{100}=0.01 \mathrm{~mole} / \mathrm{litre}$

Total moles of O_{2} present $=0.01 \times 10=0.1$ mole
\because Volume of vessel is 10 litre
(B) When $\left[\mathrm{SO}_{3}\right]=2\left[\mathrm{SO}_{2}\right]$

Then $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ from Eq. (i)

$$
100=\frac{4}{\left[\mathrm{O}_{2}\right]}
$$

$\left[\mathrm{O}_{2}\right]=4 / 100=0.04 \mathrm{~mole} / \mathrm{litre}$
Total moles of O_{2} in vessel at equilibrium $=0.04 \times 10=0.4$ mole
(C) When $\left[\mathrm{SO}_{3}\right]=3\left[\mathrm{SO}_{2}\right]$

Then $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ from Eq. (i)

$$
100=\frac{4}{\left[\mathrm{O}_{2}\right]}
$$

$\left[\mathrm{O}_{2}\right]=9 / 100=0.09 \mathrm{~mole} / \mathrm{litre}$
Total moles of O_{2} in vessel at equilibrium $=0.09 \times 10=0.9$ mole
(D) When $\left[\mathrm{SO}_{3}\right]=0.5\left[\mathrm{SO}_{2}\right]$

Then $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ from Eq. (i)
$100=\frac{4}{\left[\mathrm{O}_{2}\right]}$

$$
\left[\mathrm{O}_{2}\right]=0.25 / 100=0.0025 \mathrm{~mole} / \mathrm{litre}
$$

Total moles of O_{2} in vessel at equilibrium $=0.0025 \times 10=0.025$ mole
38. (C)
($\mathrm{A}-\mathrm{R}$); $(\mathrm{B}-\mathrm{Q}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{P})$
39. (B)

$$
\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{~S} ; \mathrm{D} \rightarrow \mathrm{P}
$$

40. (A)
($\mathbf{a} \rightarrow \mathbf{p} ; \mathbf{b} \rightarrow \mathbf{q}, \mathbf{s} ; \mathbf{c} \rightarrow \mathbf{r} ; \mathbf{d} \rightarrow \mathbf{q}, \mathbf{s}$)
$\because \mathrm{pK}_{\mathrm{a}}$ of benzoic acid $=4.22 \therefore \mathrm{pK}_{\mathrm{b}}=9.78$
and pK_{a} of phenol $=9.7 \quad \therefore \mathrm{pK}_{\mathrm{b}}=4.3$

\therefore its $P^{K} b>9.78$
 is less acidic than benzoic acid but more acidic than phenol
\therefore its $\mathrm{pK}_{\mathrm{b}}<9.78$ or $4.3<\mathrm{pK}_{\mathrm{b}}<9.78$
 is less acidic than phenol
\therefore its $\mathrm{pK}_{\mathrm{b}}>4.3$

\therefore it $\mathrm{pK}_{\mathrm{b}}<9.78$ or $4.3<\mathrm{pK}_{\mathrm{b}}<9.78$

MATHEMATICS

41. (A, C)
$f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+2 \Rightarrow f^{\prime}(x)=x^{2}+x+1$
so $f(x)$ is always increasing so, minimum of $f(g(x))$ will concide with minima of $g(x)$.
42. ($A, B, C, D)$

Here $f^{\prime}(x)>0, \forall x \in R$
$\Rightarrow f(x)$ is increasing function
Also $f(-x)=-f(x) \Rightarrow f(x)$ is odd function
Now $\alpha+\beta>0 \Rightarrow \alpha>-\beta$
$\Rightarrow f(\alpha)>f(-\beta) \Rightarrow f(\alpha)>-f(\beta) \Rightarrow f(\alpha)+f(\beta)>0$
Also, $\alpha+\beta<0 \Rightarrow f(\alpha)<-f(\beta)$
$\Rightarrow \mathrm{f}(\alpha)+\mathrm{f}(\beta)<0$
43. (A, B, C)

(A) Clearly ' O ' is the mid point of SS^{\prime} and HH '
(B) $\mathrm{AA}^{\prime}=\mathrm{SH}^{\prime}+\mathrm{S}^{\prime} \mathrm{H}^{\prime}=\mathrm{SH}^{\prime}+\mathrm{SH}=\mathrm{PP}^{\prime}=2 \mathrm{a}$ (say)
$\therefore \mathrm{OH}^{\prime}=\mathrm{ae}^{\prime}, \mathrm{OS}=\mathrm{ae}$
$\mathrm{H}^{\prime}\left(\mathrm{ae}^{\prime} \cos \theta, a \mathrm{e}^{\prime} \sin \theta\right)$ lies on
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \theta=\cos ^{-1} \sqrt{\frac{e^{2}+e^{\prime 2}-1}{e^{2} e^{\prime 2}}} \Rightarrow \theta=\frac{\pi}{2}$ if $e^{2}+e^{\prime 2}=1$
(C) $\mathrm{HH}^{\prime}=\mathrm{SS}^{\prime}$, if $\mathrm{e}^{\prime}=\mathrm{e}$
44. (A, B, C)

Curve through the intersection of S_{1} and S_{2} is given by $S_{1}+\lambda S_{2}=0$
$\Rightarrow x^{2}\left(\sin ^{2} \theta+\lambda \cos ^{2} \theta\right)+2\left(h \tan \theta-\lambda h^{\prime} \cot \theta\right) x y+\left(\cos ^{2} \theta+\lambda \sin ^{2} \theta\right) y^{2}$
$+(32+16 \lambda) x+(16+32 \lambda) y+19(1+\lambda)=0$
45. (A, B, C, D)

Given that either $p x^{2}+q y^{2}+r=0$ or $(x-1)^{2}+y^{2}=1$
(i) two straight lines if $r=0$ and $p q<0$
(ii) circle, if $p=1$ and r is of opposite sign to that of p
(iii) a hyperbola if $p q<0$ and $r \neq 0$
(iv) a circle and an ellipse if $p q>0$ and $p \neq q$ and $p r<0$
46. (B, D)
$f(x)$ is undifined at $x=-2$
$\Rightarrow g(f(x))$ is also undefined at $x=-2$
Also $\mathrm{g}(\mathrm{x})$ is undefined at $\quad \mathrm{x}= \pm 1, \mathrm{n} \pi \quad(\mathrm{n} \in \mathrm{I})$
Now

$$
f(x)=1 \Rightarrow \frac{2 x+1}{x+2}=1 \Rightarrow x=1
$$

$$
f(x)=-1 \Rightarrow \frac{2 x+1}{x+2}=-1 \Rightarrow x=-1
$$

$$
\mathrm{f}(\mathrm{x})=\mathrm{n} \pi \Rightarrow \frac{2 \mathrm{x}+1}{\mathrm{x}+2}=\mathrm{n} \pi \Rightarrow \mathrm{x}=\frac{2 \mathrm{n} \pi-1}{2-\mathrm{n} \pi} \quad\{\mathrm{n} \in l\}
$$

47. (A, B, D)

Since, $\sin ^{2}\left(\frac{A}{2}\right)+\sin ^{2}\left(\frac{B}{2}\right)+\sin ^{2}\left(\frac{C}{2}\right)=$
$\frac{1}{2}\left[3-(\cos A+\cos B+\cos C]=\frac{3}{2}-\frac{1}{2}(\cos A+\cos B+\cos C)\right.$
but the maximum value of $\cos A+\cos B+\cos C=\frac{3}{2}$
\therefore minimum value of $\sum \sin ^{2}\left(\frac{A}{2}\right)=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}$
$\therefore \sum \sin ^{2}\left(\frac{A}{2}\right) \geq \frac{3}{4}$ hence (c) is incorrect.
and (A), (B) and (D) are correct and hold good in any triangle
48. (A, D)

Let the parabolas be $y^{2}=4 a(x-k)$ and $y^{2}=-4 b(x+k)$.
A line parallel to common axis is $y=h$
Let $A=\left(\frac{h^{2}}{4 a}+k, h\right), B=\left(-k-\frac{h^{2}}{4 b}, h\right)$.
If $P(\alpha, \beta)$ is the mid point of $A B$, then
$\alpha=\frac{1}{2}\left(\frac{h^{2}}{4 a}+k-k-\frac{h^{2}}{4 b}\right)$ and $\beta=h$.

$\therefore 2 \alpha=\frac{h^{2}}{4}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right) \Rightarrow 2 \alpha=\frac{\beta^{2}}{4}\left(\frac{\mathrm{~b}-\mathrm{a}}{\mathrm{ba}}\right)$
\therefore Locus of P is $2 \mathrm{x}=\frac{\mathrm{y}^{2}}{4}\left(\frac{\mathrm{~b}-\mathrm{a}}{\mathrm{ba}}\right)$
49. (B)
$\mathrm{a}=1$
$f(x)=8 x^{3}+4 x^{2}+2 b x+1$
$f^{\prime}(x)=24 x^{2}+8 x+2 b=2\left(12 x^{2}+4 x+b\right)$
for increasing function, $f^{\prime}(x) \geq 0 \quad \forall x \in R$

$$
\begin{aligned}
& \therefore \mathrm{D} \leq 0 \quad \Rightarrow 16-48 \mathrm{~b} \leq 0 \quad \Rightarrow \mathrm{~b} \geq \frac{1}{3} \\
& \therefore \lambda=\frac{1}{3}
\end{aligned}
$$

50. (A)
if $b=1$

$$
\begin{aligned}
& f(x)=8 x^{3}+4 a x^{2}+2 x+a \\
& f^{\prime}(x)=24 x^{2}+8 a x+2 \text { or } 2\left(12 x^{2}+4 a x+1\right)
\end{aligned}
$$

for non monotonic, $\mathrm{f}^{\prime}(\mathrm{x})=0$ must have distinct roots
hence $\mathrm{D}>0$ i.e. $\quad 16 \mathrm{a}^{2}-48>0 \Rightarrow \mathrm{a}^{2}>3 ; \quad \therefore \mathrm{a}>\sqrt{3}$ or $\mathrm{a}<-\sqrt{3}$
$\therefore a \in\{2,3,4, \ldots \ldots$.
sum $=5050-1=5049$
sum of squares $=338350-1=338349$
51. (A)
$S_{1}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
So distance between foci $=2 \mathrm{ae}$ then $\mathrm{OA}=\mathrm{ae}$ Let slope of OA is tan α then co-ordinate of A $(a e \cos \alpha$, ae $\sin \alpha)$ which lies on S_{1}
So, $e^{2} \cos ^{2} \alpha+\frac{e^{2} \sin ^{2} \alpha}{1-e^{2}}=1$
$\Rightarrow e^{2}-e^{4} \cos ^{2} \alpha=1-e^{2}$

$\Rightarrow \cos ^{2} \alpha=\frac{2 \mathrm{e}^{2}-1}{\mathrm{e}^{4}} \Rightarrow 0 \leq \frac{2 \mathrm{e}^{2}-1}{\mathrm{e}^{4}} \leq 1 \Rightarrow 2 \mathrm{e}^{2}-1 \geq 0$ and $2 \mathrm{e}^{2}-1 \leq \mathrm{e}^{4}$
$\Rightarrow \mathrm{e}^{2} \geq \frac{1}{2}$ and $\left(\mathrm{e}^{2}-1\right)^{2} \geq 0 \Rightarrow$ Minimum value of $\mathrm{e}^{2}=\frac{1}{2}$
52. (C)

Now $\tan \theta=\frac{a}{b} \tan \alpha=\frac{a}{a \sqrt{1-e^{2}}} \times \frac{1-e^{2}}{\sqrt{2 e^{2}-1}}=\sqrt{\frac{1-e^{2}}{2 e^{2}-1}}$ then $\sin \theta=\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-e^{2}}{\frac{2 e^{2}-1}{\frac{e^{2}}{2 e^{2}-1}}}=\frac{1-e^{2}}{\mathrm{e}^{2}}$
53. (A)
$y^{2}=x^{2}-9 a^{2}$ and $x^{2}+y^{2}+2 g x+2 f y+c=0$
$\Rightarrow 2 x^{2}+2 g x+\left(c-9 a^{2}\right)=-2 f y$
Squaring both sides,

$4 x^{4}+4 g^{2} x^{2}+\left(c-9 a^{2}\right)^{2}+8 g x^{3}+4 g x\left(c-9 a^{2}\right)+4 x^{2}\left(c-9 a^{2}\right)-4 f^{2} x^{2}+36 f^{2} a^{2}=0$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ are the roots of the above equation.
$\therefore \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=\frac{-8 \mathrm{~g}}{4} \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=-2 \mathrm{~g}-\mathrm{x}_{4}$
Similarly, $\quad y_{1}+y_{2}+y_{3}=-2 f-y_{4} . \quad \therefore$ centroid of $\triangle P Q R$ is $\left(\frac{-2 g-x_{4}}{3}, \frac{-2 f-y_{4}}{3}\right)$.
54. (A)

Let $x=\frac{-2 g-x_{4}}{3}$ and $y=\frac{-2 f-y_{4}}{3}$, then
$3 x+2 g=-x_{4}$ and $3 y+2 f=-y_{4}$
$x_{4}{ }^{2}-y_{4}{ }^{2}=9 a^{2} \Rightarrow(3 x+2 g)^{2}-(3 y+2 f)^{2}=9 a^{2}$
55. (C)
$f^{\prime \prime}\left(c_{2}\right) f^{\prime \prime}\left(c_{1}\right)<0$ and $f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=0$

$$
f^{\prime \prime}\left(c_{1}\right)-f^{\prime \prime}\left(c_{2}\right)>0 \Rightarrow f^{\prime \prime}\left(c_{1}\right)>0 \text { and } f^{\prime \prime}\left(c_{2}\right)<0
$$

$\Rightarrow c_{2}$ is point of local maximum and c_{1} is point of local minimum for $f(x)$
$\Rightarrow f^{\prime}(x)=0$ at least four times in $\left[c_{1}-1, c_{2}+1\right]$.
56. (B)

Here c_{1} is local maximum and c_{2} is local minimum
$\Rightarrow f^{\prime}(x)=0$ has at least two roots in $\left[c_{1}-1, c_{2}+1\right]$.
57. (C)
(P) $f^{\prime}(x)=-2 \sin x+a \geq 0 \forall x$
(Q) $f^{\prime}(x)=a^{2}-\sin x \geq 0$

$$
|a| \geq 1 \Rightarrow a \in(-\infty,-1] \cup[1, \infty)
$$

(R) Product of slopes is (-1)

$$
\begin{aligned}
& a^{2}=2 \\
& a= \pm \sqrt{2}
\end{aligned}
$$

(S) $\lim _{x \rightarrow 0}(1+a \sin x)^{\operatorname{cosec} x}=\frac{1}{\sqrt{e}}$

$$
\begin{aligned}
& =\mathrm{e}^{\mathrm{a}}=\frac{1}{\sqrt{\mathrm{e}}} \\
& \Rightarrow \mathrm{a}=-\frac{1}{2}
\end{aligned}
$$

58. (A)
(P) $f^{\prime}(x)=3 a x^{2}-18 x+9=3\left(a x^{2}-6 x+3\right)$

As $f(x)$ is strictly increasing on R, so

$$
\mathrm{a}>0 \text { and } \mathrm{D} \leq 0 \Rightarrow \mathrm{a} \geq 3
$$

(Q) Put $\cos x=t, t \in[-1,1] \forall x \in R$

Let $g(t)=t^{3}-6 t^{2}+11 t-6=(t-1)(t-2)(t-3), t \in[-1,1]$
\therefore range of $g(t)=[g(-1), g(1)]=[-24,0]$
(R) $x^{3}-y^{2}=0$

$$
\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{P}\left(4 \mathrm{~m}^{2}, 8 \mathrm{~m}^{3}\right)}=\frac{3 \times 16 \mathrm{~m}^{4}}{16 \mathrm{~m}^{3}}=3 \mathrm{~m}
$$

Let Q be $\left(4 m_{1}^{2}, 8 m_{1}^{3}\right)$
\therefore Slope of normal at $Q=\frac{-1}{3 m_{1}}$

$$
\begin{equation*}
\therefore 3 m=\frac{-1}{3 m_{1}} \Rightarrow m_{1}=\frac{-1}{9 m} \tag{1}
\end{equation*}
$$

Also, slope of $\mathrm{PQ}=\frac{8\left(\mathrm{~m}^{3}-\mathrm{m}_{1}^{3}\right)}{4\left(\mathrm{~m}^{2}-\mathrm{m}_{1}^{2}\right)}=\frac{2\left(\mathrm{~m}^{2}+\mathrm{m}_{1}^{2}+\mathrm{mm}_{1}\right)}{\mathrm{m}+\mathrm{m}_{1}}=3 \mathrm{~m}$

$$
\Rightarrow\left(2 \mathrm{~m}_{1}+\mathrm{m}\right)\left(\mathrm{m}_{1}-\mathrm{m}\right)=0
$$

$$
\Rightarrow 2\left(\frac{-1}{9 m}\right)+m=0 \Rightarrow m^{2}=\frac{2}{9}
$$

(S) $(\sin \theta-\cos \theta)(\tan \theta+\cot \theta)=2$

$$
\Rightarrow \frac{\sin \theta-\cos \theta}{\sin \theta \cos \theta}=2
$$

Let $y=\sin \theta-\cos \theta$
$\therefore y=1-y^{2} \Rightarrow y^{2}+y-1=0 \Rightarrow y=\frac{-1 \pm \sqrt{5}}{2}$
59. (B)
(P) Common tangent $y=x+2 \sqrt{2}$ point of contact with two hyperbola are $\left(\frac{-9}{2 \sqrt{2}}, \frac{-1}{2 \sqrt{2}}\right)$ and $\left(\frac{1}{2 \sqrt{2}}, \frac{9}{2 \sqrt{2}}\right)$ hence length $=5$
(Q)For hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
S is $(a e, 0)$ equation of line $y=\frac{b}{a}(x-a e), P\left(\frac{a^{2}\left(1+e^{2}\right)}{2 a e}, \frac{-a b\left(e^{2}-1\right)}{2 a e}\right)$.
$\therefore \mathrm{SP}=\frac{\mathrm{b}^{2}}{2 \mathrm{a}}=\frac{9}{8}$
(R) Equation of tangent $\frac{x \cos \theta}{2 \sqrt{3}}+\frac{y \sin \theta}{18}=1$

Sum of intercept is $f(\theta)=2 \sqrt{3} \sec \theta+18 \operatorname{cosec} \theta$
$\Rightarrow f^{\prime}(\theta)=\frac{2 \sqrt{3} \sin ^{3} \theta-18 \cos ^{3} \theta}{\sin ^{2} \theta \cos ^{2} \theta}$
For max./min. $f^{\prime}(\theta)=0$

$$
\tan ^{3} \theta=3 \sqrt{3} \Rightarrow \tan \theta=\sqrt{3}
$$

(S) Equation of tangent at $\left(x_{1}, y_{1}\right)$ is $x_{1}-2 y y_{1}=4$ which is same as $2 x+\sqrt{6} y=2$

Hence $\frac{x_{1}}{2}=\frac{-2 y_{1}}{\sqrt{6}}=\frac{4}{2}$
$x_{1}=4, y_{1}=-\sqrt{6}$
$m=$ slope of line $=\frac{-\sqrt{6}}{4} \Rightarrow 4 m=-\sqrt{6}$
60. (A)
(P) $\frac{x-4}{5}=\frac{y+13}{1}=\frac{-2(20-13+6)}{26}$
$x=-1, y=-14$
(Q) $\quad|a| \in(1, \sqrt{2})$
(R) Equation of circle passes though origin and touching the line $y=x$ is $x^{2}+y^{2}+\lambda(y-x)=0$ therefore according to quesiton equation of common chord will be $(6 x+8 y-7)+\lambda(x-y)=0$ and this common chord always passes though the point $(1 / 2,1 / 2)$
(S) The point at shortest distance form the line and lying on the circle is $(2,1)$

