SOLUTIONS

PROGRESS TEST-4

RB-1810-1812 \& RBK-1805
JEE MAIN PATTERN

Test Date: 25-11-2017

Mentors Eduserv"'

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

PHYSICS.

1. $[A, B, C, D]$
(A)

Angle $B^{\prime} B^{\prime}$

$$
\begin{aligned}
& =\angle \mathrm{AOB}-\angle \mathrm{AOB}^{\prime} \\
& =2 \mathrm{i}-(2 \mathrm{i}-2 \theta) \\
& =2 \theta
\end{aligned}
$$

(B)

Total deviation $\delta=\delta_{1}+\delta_{2}$
$=\left(180^{\circ}-2 \theta\right)+180^{\circ}-2(\alpha-\theta)$
$=360^{\circ}-2 \alpha$
which is independent of angle of incidence.
(C) Power of a plane mirror is zero.
(D) Velocity of the image towards the object $=v+v=2 v$.
2. $[\mathrm{A}, \mathrm{C}]$

For concave mirror, if object is placed on the optic axis between focus \& centre of curvature the image is formed between centre of curvature \& infinity which is real, inverted \& enlarged as well as elongated also.

3. $[A, C, D]$

$$
\begin{aligned}
& I_{1}=I_{2}=I \\
& I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=\left(\sqrt{I}+\sqrt{\frac{I}{2}}\right)^{2}<4 I \\
& I_{\min }=\left(\sqrt{I}-\sqrt{\frac{I}{2}}\right)^{2}>0
\end{aligned}
$$

4. $[A, B, D]$
$\frac{d v}{d t}=-v^{2}+2 v-1$
Terminal velocity is attained when $\mathrm{a}=0$
$\Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dt}}=0$
5. $[A, B, C, D]$
6. [A,C,D]

For same range, θ_{1} and θ_{2}.
$\theta_{2}=\left(90-\theta_{1}\right) \Rightarrow \theta_{1}+\theta_{2}=90^{\circ}$
$\mathrm{t}_{1}=\frac{2 \mathrm{u} \sin \theta_{1}}{\mathrm{~g}}$ and $\mathrm{t}_{2}=\frac{2 \mathrm{u} \sin \theta_{2}}{\mathrm{~g}}$
$\therefore \frac{\mathrm{t}_{1}}{\sin \theta_{1}}=\frac{\mathrm{t}_{2}}{\sin \theta_{2}}$ and $\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}$ $\Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{\sin \theta_{1}}{\sin \left(90-\theta_{1}\right)}$
$\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\tan \theta_{1}$
7. $[A, B, D]$
8. $[A, B]$
9. $[B]$
10. [C]
11. [B]
12. [C]
13. [D]
14. [D]
15. [B]
16. [B]
17. [A]
18. (A)
19. (B)
20. (C)
$\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{t}_{1}}=\alpha$ and $\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{t}_{2}}=\beta$
also $x+y=\frac{1}{2} \times v_{m} \times\left(t_{1}+t_{2}\right)$
$\therefore(\mathrm{x}+\mathrm{y})=\frac{1}{2} \times \mathrm{v}_{\mathrm{m}} \times\left(\frac{\mathrm{v}_{\mathrm{m}}}{\alpha}+\frac{\mathrm{v}_{\mathrm{m}}}{\beta}\right)$

$\Rightarrow v_{m}=\sqrt{\frac{2(x+y) \cdot \alpha \beta}{(\alpha+\beta)}}$
Now, $v_{a v}=\frac{x+y}{t_{1}+t_{2}}=\frac{x+y}{\frac{v_{m}}{\alpha}+\frac{v_{m}}{\beta}}=\frac{\alpha \beta}{\alpha+\beta} \cdot \frac{x+y}{v_{m}}$

CHEMISTRY

21. (B)
22. (A, B, D)
23. (B, D)
\because both are liquid $\mathrm{CH}_{3} \mathrm{OH}$ is solute (less amount)
Mass of $\mathrm{CH}_{3} \mathrm{OH}=30 \times 0.8=24 \mathrm{~g}$,
Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=60 \times 0.92=55.2 \mathrm{~g}$
Mass of solution $=24+55.2=79.2 \mathrm{~g}$
Volume of solution $=\frac{79.2}{0.88}=90 \mathrm{~mL}$.
Molarity $=\frac{\mathrm{nCH}_{3} \mathrm{OH}}{\mathrm{V}(\mathrm{L})}=\frac{24 / 32}{90} \times 1000$
$=8.33 \mathrm{~mol} \mathrm{~L}^{-1}$
Molality $=\frac{\mathrm{n}_{\text {Solute }}}{\mathrm{w}_{\text {Solvent }}(\mathrm{kg})}=\frac{24 / 32}{55.2} \times 1000$

$$
=13.59
$$

Mole fraction of solute $=\frac{\frac{24}{32}}{\frac{24}{32}+\frac{55.2}{46}}=0.385$
Mole fraction of solvent $=1-0.385=0.615$
24. (B, C)
25. (A,B,C,D)

Bridge head carbocation \& cabanion are unstable.
26. (A,B,C,D)
27. (A,B,C)
28. (A, B, C)
29. (D)
30. (A)
31. (A)

At low pressure, $(\mathrm{V}-\mathrm{b})=\mathrm{V}$

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right) V=R T \\
& P V+\frac{a}{V}=R T \\
& P V=R T-\frac{a}{V} \\
& \frac{P V}{R T}=1-\frac{a}{V R T}
\end{aligned}
$$

32. (D)

Greater is the value of van der Waals' constant 'b', lesser is the compressibility of gas.
33. (C)
34. (A)

COT is tub like structure

[10] annulene :

35. (D)
36. (D)
37. (A)

Use $\%$ by moles $=\frac{M_{\text {avg }}-M_{1}}{M_{2}-M_{1}} \times 100$
$\%$ by mass $=\%$ by moles $\times \frac{M_{2}}{M_{\text {avg }}}$
38. (C)

Internal energy may be equal to $\frac{3}{2} R T$ or $3.716 \mathrm{~kJ} / \mathrm{mol}$ or may be equal to $\frac{5}{2} R T$.

Translational kinetic energy $=\frac{3}{2} \mathrm{RT}=3.716 \mathrm{~kJ} \mathrm{~mol}^{-1}$
At $\left(-273^{\circ} \mathrm{C}\right.$ or 0 K$)$, molecular motion, i.e., translational motion stops and at this temperature gas molecules have no heat.
39. (A)
40. (A)

Acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right) \propto \frac{1}{\mathrm{P}^{\mathrm{K}_{\mathrm{a}}}}$
$\because \quad P^{K a}=-\log K_{a}$

MATHEMATICS

41. (A, B, C, D)

Solving the two equations $\alpha x^{2}+\alpha x+\frac{1}{24}-y=\alpha y^{2}+\alpha y+\frac{1}{24}-x$

$$
\begin{aligned}
& (x-y)\{\alpha(x+y)+\alpha+1\}=0 \\
x=y \Rightarrow & \alpha x^{2}+(\alpha-1) x+\frac{1}{24}=0
\end{aligned}
$$

If the curves touch each other, then
$\mathrm{D}=0 \Rightarrow \alpha=\frac{2}{3}$ or $\frac{3}{2}$. Also $\alpha(x+y)+\alpha+1=0 \Rightarrow y=-x-1-\frac{1}{\alpha}$

$$
\Rightarrow \quad \alpha x^{2}+(\alpha+1) x+\frac{25}{24}+\frac{1}{\alpha}=0
$$

$\therefore \mathrm{D}=0 \Rightarrow \alpha=\frac{13 \pm \sqrt{601}}{12}$
42. (A, B)

Only $h(x)$ is periodic function because
domain of $f=[-1,1]$
domain of $g=(-\infty,-1] \cup[1, \infty)$
domain of $h=R$
43. (A, C)

The bases of all triangles PAB (A, B fixed P moving indeed A, B, Plie on a circle) will be fixed

$$
\Rightarrow \text { area }=\frac{1}{2} \times \text { base } \times \text { height }
$$

Thus if area is maximum then height must be maximum which will be true if P lies on perpendicular to bisector of $A B$.
Thus (A) and (C) are connect choices.
44. (A, B , C, D)

Equation of line through $\mathrm{A}(4,3)$ is
$\frac{x-4}{\cos \theta}=\frac{y-3}{\sin \theta}=r$
$A \equiv(4+r \cos \theta, 3+r \sin \theta)$.
$4+r \cos \theta=8 \Rightarrow r=4 \sec \theta$.
$\therefore \mathrm{AB}=4 \sec \theta$.
Similarly AC $=3 \operatorname{cosec} \theta$
$\frac{16}{\mathrm{AB}^{2}}+\frac{9}{\mathrm{AC}^{2}}=\cos ^{2} \theta+\sin ^{2} \theta=1$
So $A B+A C=\frac{4}{\cos \theta}+\frac{3}{\sin \theta}=\frac{2(4 \sin \theta+3 \cos \theta)}{\sin 2 \theta}$
45. (A, C)
$k=f(1)=\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2^{32}}-2^{32} x+4^{16}-1}{(x-1)^{2}}=\frac{2^{32}\left(2^{32}-1\right)}{2}=2^{63}-2^{31}$
46. (A, C)
$\cos x+\cos y=a$
$\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y=a^{2}$
$\cos 2 x+\cos 2 y=b$
$\therefore \quad \cos ^{2} x+\cos ^{2} y=\frac{b+2}{2}$
$\therefore \quad$ From (1) and (2), $\cos x \cos y=\frac{a^{2}}{2}-\frac{b+2}{4}$
Now, $\cos 3 x+\cos 3 y=c$
$\therefore \quad 4 \cos ^{3} x-3 \cos x+4 \cos ^{3} y-3 \cos y=c$
$4(\cos x+\cos y)\left(\cos ^{2} x+\cos ^{2} y-\cos x \cos y\right)-3(\cos x+\cos y)=c$
$\Rightarrow 2 a^{3}+c=3 a(1+b)$.
47. (A, B)

Point ' P ' clearly lies on the directrix of $y^{2}=8 x$. Thus slope of PA and PB and 1 and -1 respectively.
Equation of $P A$ is $y=x+2$ and equation of $P B$ is $y=-x-2$
Equation of $A B$ is $x=2$
Let centre of circle be $C(\alpha, 0)$ and radius be ' r ', then

$$
\begin{aligned}
& \frac{|\alpha+2|}{\sqrt{2}}=\frac{|\alpha-2|}{1}=r \\
\Rightarrow & \alpha^{2}+4+4 \alpha=2\left(\alpha^{2}+4-4 \alpha\right) \\
\Rightarrow & \alpha=\frac{12 \pm 8 \sqrt{2}}{2}=6 \pm 4 \sqrt{2} \\
\Rightarrow & r=|\alpha-2|=4(\sqrt{2}-1) \text { or } 4(\sqrt{2}+1)
\end{aligned}
$$

48. (A, B)
$f(x+y)=3^{y} f(x)+2^{x} f(y)$
put $\mathrm{x}=1$
$f(1+y)=3^{y}+2 f(y)$
puty $=1$
$f(x+1)=3 f(x)+2^{x}$
$\therefore 3^{x}+2 f(x)=3 f(x)+2^{x}$
$f(x)=3^{x}-2^{x}$
49. (A)
$x-1=3 \cos \theta$
$y-2=4 \sin \theta$
$x+y=3+3 \cos \theta+4 \sin \theta$
maximum value $=3+5=8$
50. (C)

Since range of $f(x)=\sin ^{2 n} x+\cos ^{2 n} x$ where $n \in N$ is
$\left[\frac{1}{2^{n-1}}, 1\right]$ so range of $\sin ^{8} x+\cos ^{8} x$ is

$$
\left[\frac{1}{2^{4-1}}, 1\right]=\left[\frac{1}{8}, 1\right] \because \mathrm{n}=4
$$

51. (C)
$P^{\prime \prime}(x)=P^{\prime \prime}(0)=$ a constant
$\therefore P(x)$ is a quadratic polynomial.
Let $P(x)=a x^{2}+b x+c$, then
$P(1)-P(0)=2 \quad \Rightarrow a+b=2$
$P^{\prime}(1)-P^{\prime}(0)=2 \Rightarrow 2 a=2$
$\therefore a=b=1$
$\therefore P(2)-P(1)=3 a+b=4$
52. (D)
$P(x)=0 \quad \Rightarrow x^{2}+x+c=0$
roots are real
$\Rightarrow D \geq 0 \Rightarrow 1-4 c \geq 0 \Rightarrow c \leq \frac{1}{4}$
53. (A)

Circumcircle of $\triangle P Q R$ passes through the centre C of the circle with $P C$ as a diameter.
Let $S(h, k)$ be the circumcentre, then
S is mid point of $P C$
$\Rightarrow \quad(\mathrm{h}, \mathrm{k})=\left(\frac{\alpha+2}{2}, \frac{\alpha+2}{2}\right)$
$\Rightarrow \mathrm{h}=\mathrm{k}$
\therefore Locus is $\mathrm{y}=\mathrm{x}$.

54. (B)

Orthocentre of $\triangle P Q R$ is the image of C about $Q R$. Let $P \equiv(\alpha, \alpha+2)$ and $\mathrm{H}(\mathrm{h}, \mathrm{k})$ be the orthocentre.
Equation of chord of contact QR is

$$
\begin{gathered}
x \alpha+y(\alpha+2)-\frac{4(x+\alpha)}{2}=0 \\
\text { i.e., }(\alpha-2) x+(\alpha+2) y=2 \alpha \\
\therefore \frac{h-2}{\alpha-2}=\frac{k-0}{\alpha+2}=\frac{-2(2(\alpha-2)-2 \alpha)}{(\alpha-2)^{2}+(\alpha+2)^{2}}
\end{gathered}
$$

$\Rightarrow \mathrm{h}-2=\frac{8(\alpha-2)}{(\alpha-2)^{2}+(\alpha+2)^{2}}, \mathrm{k}=\frac{8(\alpha+2)}{(\alpha-2)^{2}+(\alpha+2)^{2}}$
$\Rightarrow(\mathrm{h}-2)^{2}+\mathrm{k}^{2}=\frac{64}{(\alpha-2)^{2}+(\alpha+2)^{2}}$ and $\mathrm{h}-\mathrm{k}-2=\frac{-32}{(\alpha-2)^{2}+(\alpha+2)^{2}}$
$\Rightarrow(\mathrm{h}-2)^{2}+\mathrm{k}^{2}=-2(\mathrm{~h}-\mathrm{k}-2)$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}-2 \mathrm{~h}-2 \mathrm{k}=0$
\therefore Locus is $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-2 \mathrm{y}=0$
55. (B)

The circumcircle always passes through the vertex of the parabola.
56. (D)

$$
\begin{gathered}
\underset{\begin{array}{c}
\text { orthocentre } \\
(\alpha, \beta)
\end{array}}{\stackrel{\text { centroid }}{2: 1}} \begin{array}{c}
\text { circumcentre }
\end{array} \\
\left(0, \frac{2}{3}(h-2 a)\right)
\end{gathered}\left(\begin{array}{c}
\left(\frac{k}{4}, a+\frac{h}{2}\right)
\end{array}\right.
$$

57. (A)
(P) $f(x)$ is continuous $\forall x \in R$ but not differentiable at $x=2$
(Q) $g(x)$ is discontinuous and non-differentiable at $x=I$
(R) $h(x)$ is continuous and differentiable for $\forall x \in R$
(S) $\Psi(x)$ is continuous everywhere but not differentiable at $x=1$
58. (A)
(P) $\quad\left(\frac{1}{100}\right)^{\log _{5} \frac{1}{2}-\frac{1}{2}}=\frac{1}{(100)^{\log _{10} \frac{1}{5}}} \cdot \frac{1}{100^{\frac{-1}{2}}}=\frac{10}{10^{\log _{10} \frac{1}{25}}}=250 \Rightarrow P, S$
(Q) $\quad \log _{3}(\sqrt{73}-8)=\log _{3}\left(\frac{73-64}{\sqrt{73}+8}\right)=\log _{3}\left(\frac{9}{\sqrt{73}+8}\right)=2-\log _{3}(\sqrt{73}+8)$
negaitve and irrational $\Rightarrow Q, R$
(R) $\quad \log _{10}(\log 10)=0 \Rightarrow S$
(S) $\left.\left(\frac{1}{3}\right)^{\log _{9} 2-3}=27 \cdot \frac{1}{3^{\log _{9} 2}}=\frac{27}{3^{\log _{3} \sqrt{2}}}=\frac{27}{\sqrt{2}} \Rightarrow \mathrm{P}, \mathrm{R}\right]$
59. (C)
(P) $A(0,0), B(t), C(-t)$
$B C=12 t, y^{2}=4 a x, a=3$
D is mid-point of $B C$ and $\frac{B D}{A D}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow \frac{2}{t}=\frac{1}{\sqrt{3}}$.
$\therefore \quad B C=4 a t=24 \sqrt{3}$.
(Q) D is mid-point of chord $B C ; \angle B A D=45^{\circ}$
$A B=$?
$\mathrm{B}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) ; \frac{2}{\mathrm{t}}=\tan 45^{\circ} \Rightarrow \mathrm{t}=2$.
Now, $\quad(A B)^{2}=4 a^{2} t^{2}+a^{2} t^{4}$

$$
=9(4 \times 4+16)=9 \times 32
$$

$\Rightarrow \mathrm{AB}=12 \sqrt{2}$.
(R) Normal at $P\left(t_{1}\right)$ cuts curve at $Q\left(t_{2}\right) ; S(a, 0)$

Also, $\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$
Now, PS \perp QS

$$
\begin{aligned}
& \Rightarrow \frac{2 \mathrm{at}_{1}}{\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}-1\right)} \times \frac{2 \mathrm{at}_{2}}{\mathrm{a}\left(\mathrm{t}_{2}^{2}-1\right)}=-1 \Rightarrow-4 \mathrm{t}_{1} \mathrm{t}_{2}=\left(\mathrm{t}_{1}{ }^{2}-1\right)\left(\mathrm{t}_{2}{ }^{2}-1\right) \\
& \Rightarrow 4\left(\mathrm{t}_{1}+\frac{1}{\mathrm{t}_{1}}\right)^{2}=\left(\mathrm{t}_{1}^{2}+1\right)^{2} \Rightarrow \mathrm{t}_{1}= \pm 2 \\
& \therefore \quad(P Q)^{2}=\mathrm{a}^{2}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)^{2} \times\left[4+\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}\right] \Rightarrow P Q=15 \sqrt{5} .
\end{aligned}
$$

(S) If PQ is a normal chord, $\mathrm{P}\left(\mathrm{t}_{1}\right), \mathrm{Q}\left(\mathrm{t}_{2}\right), \angle \mathrm{QOP}=\frac{\pi}{2}$
then $t_{1} t_{2}=-4$ and $t_{2}=-t_{1}-\frac{2}{t_{1}} \Rightarrow t_{1}{ }^{2}=2 \Rightarrow t_{1}= \pm \sqrt{2}$
$\Rightarrow t_{2}=\mp 2 \sqrt{2}$

$$
\begin{aligned}
\therefore \quad(P Q)^{2} & =a^{2}\left(t_{1}-t_{2}\right)^{2}\left[4+\left(t_{1}+t_{2}\right)^{2}\right] \\
& =9(3 \sqrt{2})^{2}\left(4+(\sqrt{2})^{2}\right)=81 \times 2 \times 6 \\
\Rightarrow \quad P Q= & 18 \sqrt{3} .
\end{aligned}
$$

60. (C)
(P) $f(x)=\sin ^{-1} x$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{1^{+}}{2}} f\left(3 x-4 x^{3}\right)=\ell-3\left(\lim _{x \rightarrow \frac{1}{2}} f(x)\right) \\
& \Rightarrow \ell=\pi[\ell]=3
\end{aligned}
$$

(Q) $\sin \left(\frac{1}{2}\left(\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right)-\tan ^{-1} x\right) \quad \tan ^{-1} x=\theta ; x=\tan \theta$

$$
\sin \left(\frac{1}{2}\left(\tan ^{-1}(\tan 2 \theta)\right)-\theta\right) \quad \sin (\theta-\pi / 2-\theta)=\sin \frac{\pi}{2}=-1
$$

(R) Domain of given question is $x=-1$ and 1 and $x=1$ satisfy the equation
(S) $\tan ^{-1} x+\tan ^{-1} \frac{1}{x}=-\frac{\pi}{2}$ when $x<0$

