## SOLUTIONS

## PHASE TEST-1

## RB-1813-1815, RBK-1806

 RBS-1803-1804
## JEE MAIN PATTERN

## Test Date: 25-11-2017



Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

1. (B)
2. $(A)$
3. (B)

We have

$$
|\mathrm{m}|=\frac{\ell}{0}=\frac{\mathrm{v}}{\mathrm{u}}=\frac{50}{25}=2
$$

There are two possibilities
(i) If the image is inverted (i.e., real)

$$
m=\frac{v}{u}=-2 \quad \text { or, } \quad v=-2 u
$$

Let $x$ be the object distance in this case
We have

$$
u=-x ; v=+2 x ; f=+30 \mathrm{~cm}
$$

Using lens formula, we have

$$
\frac{1}{2 x}-\frac{1}{-x}=\frac{1}{30} \quad \text { or, } \quad x=45 \mathrm{~cm}
$$

Hence, the distance between the object and the image $=45+90=135 \mathrm{~cm}$.
(ii) If the image is erect (i.e., virtual)

$$
m=\frac{v}{u}=+2
$$

Let $x$ ' be the object distance we have

$$
u=-x^{\prime} ; v=-2 x^{\prime} ; f=+30
$$

Let $x^{\prime}$ be the object formula, we have $\frac{1}{-2 x^{\prime}}+\frac{1}{x}=\frac{1}{30}$
$\Rightarrow x^{\prime}=15 \mathrm{~cm}$
Hence the distance between the object and the image $=15 \mathrm{~cm}$
4. (C)

For the refraction at the convex lens, we have

$$
\mathrm{u}=-12 \mathrm{~cm} ; \mathrm{v}=? \mathrm{f}=+10 \mathrm{~cm}
$$

Using lens formula, we have


$$
\frac{1}{v}-\frac{1}{(-12)}=\frac{1}{10}
$$

or, $v=+60 \mathrm{~cm}$
Thus, in the absence of the convex mirror, convex lens will form the image $I_{1}$, at a distance of 60 cm behind the lens. As the mirror is at a distance of 10 cm from the lens, $I_{1}$ will be at a distance of $(60-10)=50 \mathrm{~cm}$ from the mirror, i.e., $M I_{1}=50 \mathrm{~cm}$.
Now, as the final image $I_{2}$ is formed at the object itself, the rays after reflection from the mirror retraces its path, i.e., the rays on the mirror are incident normally, i.e., $l_{1}$ is the centre of the mirror so that
$R=M I_{1}=+50 \mathrm{~cm}$
and $f=\frac{R}{2}=\frac{50}{2}=+25 \mathrm{~cm}$
5. (A)

Let $R$ be the radius of curvalue of each surface.
$\left(P_{m}\right)_{e q}=2 P_{L}+P_{m}$
$P_{L}=\frac{1}{60} \times 100=\frac{5}{3} D$


Also $\quad \frac{1}{60}=(1.5-1) \frac{2}{R}$
$R=60 \mathrm{~cm}$
$f_{m}=-30 \mathrm{~cm}, P_{m}=\frac{1}{30} \times 100 D$
$\left(P_{m}\right)_{\text {eq }}=2 \times \frac{5}{3}+\frac{10}{3}=\frac{20}{3} D$
$f_{\text {eq }}=-\frac{3}{20} \times 100$
$f_{\text {eq }}=-15 \mathrm{~cm}$
The negative sign indicates that the resulting mirror is concave.
6. (A)
7. (C)
8. (C)
9. (D)
13. (D)
10. (A)
14. (C)
17. (B)
18. (A)

Two bowl, exerts a normal force N on each bead, directed along the radius line or at $60^{\circ}$ above the horizontal. Consider the free-body diagram of the bead on the left with the electric force $F_{e}$ applied.
$\Sigma F_{y}=N \sin 60^{\circ}-m g=0, \quad \Rightarrow N=m g / \sin 60^{\circ}$

$\Sigma F_{y}=-F_{e}+N \cos 60^{\circ}=0, \Rightarrow \frac{\mathrm{Kq}^{2}}{R^{2}}=N \cos 60^{\circ}=\frac{\mathrm{mg}}{\tan 60^{\circ}}=\frac{\mathrm{mg}}{\sqrt{3}}$
$\mathrm{K}=\frac{1}{4 \pi \varepsilon_{0}}$
Thus $q=R\left(\frac{m g}{K \sqrt{3}}\right)^{1 / 2}$
19. (B)
$F=\frac{K q d q}{x^{2}}$
$d q=\lambda d x$

$F=\int_{d-\ell / 2}^{d+\ell / 2} \frac{\mathrm{Kq} \lambda \mathrm{dx}}{\mathrm{x}^{2}} \quad \mathrm{~F}=\frac{\mathrm{Kq} \lambda \ell}{\left(\mathrm{d}^{2}-\frac{\ell^{2}}{4}\right)} \Rightarrow \mathrm{F}=\frac{\mathrm{KqQ}}{\left(\mathrm{d}^{2}-\frac{\ell^{2}}{4}\right)}$
20. (D)
21. (D)

Distance of the point $P$ from any axis $=a \sqrt{2}$
$\therefore$ magnitude of field due to each line charge

$$
\mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{a} \sqrt{2}}
$$

electric field dut to charg along $x$-axis.

$$
\vec{E}_{x}=\frac{E}{\sqrt{2}}(\hat{j}+\hat{k})
$$

Similarly

$$
\begin{aligned}
& \vec{E}_{x}=\frac{E}{\sqrt{2}}(\hat{j}+\hat{k}) \quad ; \quad \vec{E}_{z}=\frac{E}{\sqrt{2}}(\hat{j}+\hat{j}) \\
\therefore & \vec{E}_{\text {net }}=\vec{E}_{x}+\vec{E}_{y}+\vec{E}_{z}=E \sqrt{2}(\hat{i}+\hat{j}+\hat{k}) \\
\therefore & E_{\text {net }}=E \sqrt{2} \cdot \sqrt{3}=\frac{2 k \lambda \sqrt{3}}{a}
\end{aligned}
$$

22. (B)

$$
\mathrm{dE}=\mathrm{K} \frac{\mathrm{dq}}{\mathrm{R}^{2}}
$$



So, $E=\int_{\theta=-\pi / 2}^{\theta=+\pi / 2} d E \cos \theta=\int_{\theta=-\pi / 2}^{\theta=+\pi / 2} K \frac{\left(\lambda_{0} \sin \theta\right)}{R^{2}} R d \theta \cos \theta$

$$
\overrightarrow{\mathrm{E}}=\frac{\lambda}{4 \pi \varepsilon_{0}}(-\hat{\mathrm{j}})
$$

23. (A)
24. (D)
25. (C)

The retardation is given by

$$
\frac{d v}{d t}=-a v^{2}
$$

integrating between proper limits

$$
\begin{aligned}
& \Rightarrow-\int_{u}^{v} \frac{d v}{v^{2}}=\int_{0}^{t} a d t \\
& \Rightarrow \frac{1}{v}=a t+\frac{1}{u} \\
& \Rightarrow \frac{d t}{d x}=a t+\frac{1}{u} \quad \Rightarrow d x=\frac{u d t}{1+a u t}
\end{aligned}
$$

integrating between proper limits

$$
\Rightarrow \int_{0}^{s} d x=\int_{0}^{t} \frac{u d t}{1+a u t} \quad \Rightarrow S=\frac{1}{a} \ln (1+a u t)
$$

26. (A)
27. (D)
28. (D)
29. (A)
30. (C)

CHEMISTRY
31. (C)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 0.0006 \mathrm{~g} / \mathrm{ml} \\
& \mathrm{~V}=1 \mathrm{~L}=1000 \mathrm{~mL} \\
& \mathrm{w}=0.6 \mathrm{~g} \\
& \frac{0.6}{18} \text { mole }
\end{aligned}
$$

mole of $\mathrm{H}_{2} \mathrm{O}(\ell)=0.6 / 18 ; \mathrm{w}_{\mathrm{H}_{2} \mathrm{O}}=\frac{0.6}{18} \times 18=0.6 \mathrm{~g}$

$$
\Rightarrow \mathrm{v}_{\mathrm{H}_{2} \mathrm{O}}=0.6 \mathrm{~mL}
$$

32. (B)

$$
\tan \theta=1.5 \times 10^{22}=\frac{\text { No. of atom }}{\mathrm{wt}}
$$

$$
\frac{\mathrm{N}_{\mathrm{A}}}{\text { at.wt. }}=1.5 \times 10^{22}
$$

$$
\text { At.wt. }=\frac{6.023 \times 10^{23}}{1.5 \times 10^{22}}
$$

$$
=4 \times 10=40
$$

33. (B)
$\mathrm{W}_{\mathrm{Af} \mathrm{F}_{3}}=4.2 \mathrm{~g}$
mole of $\mathrm{A} \ell \mathrm{F}_{3}=\frac{4.2}{84}=0.05 \mathrm{~mole}$
$=0.15 \mathrm{~mole}^{-}$
34. (A)
22.4 L of gas at $\mathrm{STP} \equiv 6.02 \times 10^{23}$

22400 mL of gas at STP $\equiv 6.023 \times 10^{23}$
1 mL of gas at $\mathrm{STP} \equiv \frac{6.023 \times 10^{23}}{22400}=2.7 \times 10^{19}$
35. (B)

Mole $=\frac{448}{22400}=\frac{2}{3 a}$
$\mathrm{a}=\frac{2 \times 22400}{3 \times 448} \mathrm{amu}$
$=33.33 \mathrm{amu}$
$=33.33 \times 1.66 \times 10^{-24} \mathrm{~g}$
36. (C)
37. (B)
$\underset{\substack{420 \\ 42 \\ \mathrm{C}_{3} \mathrm{H}_{6} \\ \mathrm{H}_{\text {mol }}}}{ }(\mathrm{g})+\frac{3}{2} \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}+\frac{1}{4} \mathrm{~N}_{2}$
$\mathrm{w}_{\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}=10^{4} \times 53 \mathrm{~g}=530 \mathrm{~kg}$
38. (B)
$\mathrm{NH}_{3}(\mathrm{~g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}} \mathrm{NO}(\mathrm{g})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
0.12 mole 0.14 mole
$\Rightarrow \mathrm{O}_{2}$ is L.R.
$\mathrm{n}_{\mathrm{NO}}=0.112 \mathrm{~mole}$
39. (C)
40. (A)

Molarity $=\frac{\left(\frac{12}{60}\right)}{\left(\frac{1200}{1.2}\right)} \times 1000=0.2 \mathrm{M}$
41. (B)

+M/-I

$+\mathrm{M} /-\mathrm{I}$



+ M effect in order of $-\mathrm{NH}_{2}>-\mathrm{OH}>-\mathrm{OR}$
So, stabality order $\rightarrow$ III > II > I > IV

42. (C)


All the carbon in Benzyne is $\mathrm{sp}^{2}$ hybridised.
43. (C)

44. (B)

45. (B)

$$
-\mathrm{COOH}>-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{CONH}_{2}>-\mathrm{CHO}
$$

46. (A)
$\rightarrow$ (III) \& (II) having resonance, but (iii) is more effectively involve is resonance
$\rightarrow$ Stabality of free radical $\rightarrow$ III > II > I > IV
47. (B)

In structure (B) resonance operates and it also contain 10 hyperconjugating hydrogen atom. So, most stable.
48. (C)

(*) marked bonds are formed by $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ overlap.
49. (C)

Compound is aromatic and extended conjugation. So, most stable having lower value for heat of hydrogenation.
50. (D)


51. (B)
$\mathrm{NaOH} \rightarrow \mathrm{Na}+: \stackrel{\ominus}{\mathrm{O}}-\mathrm{H}$
52. (C)
positive radius $\alpha \frac{1}{+ \text { ve O.S. }}$
(A) $\stackrel{+4}{\mathrm{MnO}_{2}^{-2}}$
(B) ${ }^{+1+}{ }^{+7} \mathrm{MnO}_{4}^{-8}$
(C) $\mathrm{MnO}^{+2-2}$
(D) $\underset{\substack{\downarrow \\ \mathrm{x}=+3}}{\mathrm{~K}_{3}}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
53. (B)
$19 \mathrm{~K}^{+}=1.34 \dot{\mathrm{~A}}$ (Cationic radius)
$9 F=1.34 \dot{A}$ (Anionic radius)
54. (D)

All are iso-electronic species.
55. (D)

A Gives equeous solution [ $\mathrm{PH}<7$ ]
B Reacts with strong acid and alkalis respectively.
C Gives an aqueous solution which is strongly alkaline
A - Acidic - $\mathrm{P}(\mathrm{OH})_{3}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$
B - Amphoteric - $\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{H}_{3} \mathrm{AlO}_{3}$
C - Basic - NaOH
$x=$ Phousphorous - Non metal
$y=$ Aluminium - Metal
c = Sodium - Metal
56. (A)

Lattice $\alpha$ Hardness
(A) $\mathrm{Ti}>\mathrm{ScN}>\mathrm{MgO}>\mathrm{NaF}-$ order of lattic energy
(B) $\mathrm{NaCl}<\mathrm{CsCl}-$ Co-ordinate no. $\mathrm{NaCl}=6$ $\mathrm{CsCl}=8$
(C) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}-$ Melting point
57. (B)
$\mathrm{Cs}^{+} \mathrm{I}_{3}^{-}$(large cation stabilises by large anion)
58. (D)
$\underset{2 S^{-}}{\mathrm{Li}}+\mathrm{e}^{-} \xrightarrow{\mathrm{Ea}} \underset{2 \mathrm{~S}^{2}}{\mathrm{Li}^{-}}$exothermic
59. (C)
(I) $\mathrm{HClO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HNO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}$
(II) $\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}>\mathrm{HIO}_{3}$
60. (A)
(A) Lattic energy depend upon:
(i) Size of cation and anion both
(ii) Product of charges at cation \& anion
(B) $\mathrm{CdCl}_{2}>\mathrm{CaCl}_{2}-$ Both Hydration \& Lattice is high than $\mathrm{CaCl}_{2}$ As per (born haber cycle)
(C) $\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$(Hydration energy) so, $\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$ (Solubility in water)
(D) $\mathrm{Be}_{3} \mathrm{~N}_{2}>\mathrm{Mg}_{3} \mathrm{~N}_{2}>\mathrm{Ca}_{3} \mathrm{~N}_{2}$ (Thermal stability)

## MATHEMATICS

61. (D)

Circumcentre of $\triangle P Q R$ is point of intersection of given lines is $A(1,-1)$
Hence line through $A(1,-1)$ is $y+1=m(x-1)$
For $\mathrm{x}=0 \Rightarrow \mathrm{y}=-1-\mathrm{m}$ and $\mathrm{y}=0 \Rightarrow \mathrm{x}=\frac{1}{\mathrm{~m}}+1$
Hence area $(\Delta)=\frac{1}{2}\left|\left(1+\frac{1}{m}\right)(m+1)\right|=\frac{1}{2}\left|2+m+\frac{1}{m}\right|=\frac{1}{2}\left(2+m+\frac{1}{m}\right)$ as $(m>0)$
$\Rightarrow \frac{\mathrm{d} \Delta}{\mathrm{dm}}=2\left(1-\frac{1}{\mathrm{~m}^{2}}\right)=0 \quad \Rightarrow \mathrm{~m}=1,-1$
at $\mathrm{m}=1, \Delta=2$ which is maximum
62. (A)

63. (A)

Normals are $(y-2)(y-2 x)=0$
$\Rightarrow$ centre is $(1,2)$
radius $=\sqrt{(1-2)^{2}+(2-1)^{2}}=\sqrt{2}$
64. (A)

$$
\begin{gathered}
\frac{(x-1)^{3}\left(x^{2}+3 x+2\right)^{5}|x+4|}{\left(x^{2}+4 x+4\right)^{7}}<0 \\
\Rightarrow \frac{(x-1)^{3}(x+2)^{5}(x+1)^{5}|x+4|}{\left((x+2)^{2}\right)^{7}}<0 \Rightarrow \frac{(x-1)^{3}(x+2)^{5}(x+1)^{5}|x+4|}{(x+2)^{14}}<0
\end{gathered}
$$

$\Rightarrow \mathrm{x} \in(-\infty,-2) \cup(-1,1)$ and $1<|\mathrm{x}-3|<5$
$\Rightarrow 1<x-3<5$ or $-5<x-3<-1 \Rightarrow 4<x<8$ or $-2<x<2$
Hence common solution is $(-1,1)$
65. (A)
$\tan (\pi \cos \theta)=\cot (\pi \sin \theta)=\tan \left( \pm \frac{\pi}{2}-\pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta= \pm \frac{\pi}{2}-\pi \sin \theta \Rightarrow \cos \theta+\sin \theta= \pm \frac{1}{2}$
$\Rightarrow \sqrt{2} \cos \left(\theta-\frac{\pi}{4}\right)= \pm \frac{1}{2} \Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)= \pm \frac{1}{2 \sqrt{2}}$
Hence (A) is the correct answer.
66. (A)

From $\sin x+\sin ^{2} x=1$, we get $\sin x=\cos ^{2} x$, Now, the given expression is equal to $\cos ^{6} x\left(\cos ^{6} x+3 \cos ^{4} x+3 \cos ^{2} x+1\right)-1=\cos ^{6} x\left(\cos ^{2} x+1\right)^{3}-1$
$=\sin ^{3} x(\sin x+1)^{3}-1=\left(\sin ^{2} x+\sin x\right)^{3}-1=1-1=0$
Hence (a) is the correct answer.
67. (A)

$$
\begin{aligned}
\cos A \cdot \cos \left(45^{\circ}-A\right) & =\cos A\left(\frac{\cos A+\sin A}{\sqrt{2}}\right) \\
& =\frac{1}{\sqrt{2}}\left(\cos ^{2} A+\sin A \cdot \cos A\right) \\
& =\frac{1}{2 \sqrt{2}}((1+\cos 2 A)+\sin 2 A)
\end{aligned}
$$

as $\cos 2 \mathrm{~A}+\sin 2 \mathrm{~A}+1 \leq \sqrt{2}+1$
$\therefore \quad$ max. value of $\cos A \cdot \cos B=\frac{1}{2 \sqrt{2}}(1+\sqrt{2})$
68. (C)
$0 \leq\{x\}<1$
i.e. $-1<-\{x\} \leq 0$
$\therefore \frac{\pi}{2} \leq \cos ^{-1}(-\{\mathrm{x}\})<\pi$
$\therefore$ the range is $\left[\frac{\pi}{2}, \pi\right)$
69. (D)

Equation of the lines joining the origin to the points of intersection of the given curves is

$$
3 x^{2}+p x y-4 x(y+2 x)+1 .(y+2 x)^{2}=0
$$

$\Rightarrow x^{2}-p x y-y^{2}=0$
which are perpendicular for all values of $p$.
70. (C)

According to property

$$
\begin{aligned}
& \log _{2} x \geq \log _{2^{-1}}(x-1) \\
\Rightarrow & \log _{2} x \geq-\log _{2}(x-1) \Rightarrow \log _{2} x(x-1) \geq 0 \\
\Rightarrow & \log _{2} x(x-1) \geq \log _{2} 1 \Rightarrow x(x-1) \geq 1 \Rightarrow x^{2}-x-1 \geq 0 \\
\Rightarrow & \left(x-\frac{1-\sqrt{5}}{2}\right)\left(x-\frac{1+\sqrt{5}}{2}\right) \geq 0 \Rightarrow x \geq \frac{1+\sqrt{5}}{2} \text { or } x \leq \frac{1-\sqrt{5}}{2}
\end{aligned}
$$

$\left(\because \log _{1 / 2}(\mathrm{x}-1)\right.$ is definedonly $\left.\mathrm{x}-1>0\right)$ and $\log \mathrm{x}$ is defined when $\mathrm{x}>0$ combining above all we get common value is
$x \in\left[\frac{1+\sqrt{5}}{2}, \infty\right)$
71. (A)
$3 \cos 2 \theta=1 \Rightarrow \tan ^{2} \theta=1 / 2$
Now, $32 \tan ^{8} \theta=2 \cos ^{2} \alpha-3 \cos \alpha$

$$
\begin{aligned}
& 32 \cdot\left(\frac{1}{2}\right)^{4}=2 \cos ^{2} \alpha-3 \cos \alpha \\
\Rightarrow & 2 \cos ^{2} \alpha-3 \cos \alpha-2=0 \\
\Rightarrow & \cos \alpha=-\frac{1}{2}
\end{aligned}
$$

72. (D)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cl}
6-3 x, & x \leq 1 \\
4-x, & 1<x \leq 2 \\
x, & 2<x \leq 3 \\
3 x-6, & x>3
\end{array}\right. \\
& 6-3 x \leq 7 \Rightarrow x \in\left[-\frac{1}{3}, 1\right] \\
& 4-x \leq 7 \Rightarrow x \in(1,2] \\
& x \leq 7 \Rightarrow x \in(2,3] \\
& 3 x-6 \leq 7 \Rightarrow x \in\left(3, \frac{13}{3}\right]
\end{aligned}
$$



Hence solution of given inequality never lies between $\left[\frac{9}{2}, 5\right]$
73. (D)
$\lim _{x \rightarrow \infty} \frac{\frac{2}{x}+2+\frac{\sin 2 x}{x}}{\left(2+\frac{\sin 2 x}{x}\right) e^{\sin x}}$ and $-1 \leq \sin x \leq 1$
74. (C)

Let the circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$
$2(-g)(-2)+2(-f)(3)=c+9$
and $2(-\mathrm{g})\left(\frac{5}{2}\right)+2(-\mathrm{f})(-2)=\mathrm{c}-2$
$\Rightarrow$ locus of centre is $9 x-10 y+11=0$
75. (A)

$$
\begin{aligned}
f(\theta) & =\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta}=\frac{(\cos \theta-\sin \theta)^{2}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{2(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)}=\frac{(\cos \theta-\sin \theta)+(\cos \theta+\sin \theta)}{2(\cos \theta+\sin \theta)} \\
& =\frac{2 \cos \theta}{2(\cos \theta+\sin \theta)}=\frac{1}{1+\tan \theta}
\end{aligned}
$$

$f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{\left(1+\tan 34^{\circ}\right)}=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{\left(1+\tan \left(45^{\circ}-11^{\circ}\right)\right)}$

$$
=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{1+\frac{1-\tan 11^{\circ}}{1+\tan 11^{\circ}}}=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1+\tan 11^{\circ}}{2}=\frac{1}{2}
$$

76. (D)
$\mathrm{x}^{2}+4 \mathrm{x}+\alpha^{2}-\alpha \geq 0 \forall \mathrm{x} \in \mathrm{R}$
According to given condition we must have $D=0 \Rightarrow \alpha=\frac{1 \pm \sqrt{17}}{2}$
77. (A)
$f^{-1}(x)=\frac{x+\frac{1}{2}}{-\frac{1}{4} x+\frac{3}{4}}$
78. (B)
$f(x)=\frac{\sin ^{-1}(3-x)}{\log (1 x)-2)}$
Let $\mathrm{g}(\mathrm{x})=\sin ^{-1}(3-\mathrm{x}) \Rightarrow-1 \leq 3-\mathrm{x} \leq 1$
The domain of $g(x)$ is $D_{1}$ is $[2,4]$
Let $h(x)=\log (|x|-2) \quad$ i.e., $|x|-2>0$ or $|x|>2$
i.e., $x<-2$ or $x>2 \quad \therefore \quad$ Domain $\mathrm{D}_{2}$ is $(-\infty,-2) \cup(2, \infty)$

We know that domain of $\frac{f(x)}{g(x)}$ is defined $\forall x \in D_{1} \cap D_{2}-\{x: g(x)=0\}$
Therefore, the domain of $f(x)$ is $(2,4]-\{3\}=(2,3) \cup(3,4]$
79. (D)

Here $A, B, C$ lie on a circle having centre at origin. So, $A, B, C$ form a right angled triangle, if any side is a diameter.

Now, $\gamma-\alpha=\pi \Rightarrow \angle A O C=\pi$
$\Rightarrow A C$ is a diameter
$\Rightarrow \triangle A B C$ is right angled.
80. (D)

The given expression is equal to
$\left(\sin 47^{0}+\sin 61^{\circ}\right)-\left(\sin 11^{\circ}+\sin 25^{\circ}\right)=2 \sin 54^{\circ} \cos 7^{\circ}-2 \sin 18^{0} \cos 7^{0}$
$=2 \cos 7^{\circ}\left(\sin 54^{\circ}-\sin 18^{\circ}\right)=2 \cos 7^{0}\left[\frac{\sqrt{5}+1}{4}-\frac{\sqrt{5}-1}{4}\right]=\cos 7^{0}$
Hence (d) is the correct answer.
81. (D)

For $f(x)$ to be onto function its range must be $R^{+}$- the set of positive real numbers
$f(x)=x^{2}+x-20=\left(x+\frac{1}{2}\right)^{2}-\frac{81}{4}=(x+5)(x-4)$


For $\alpha \geq-5$, range of $f(x)$ is superset of $R^{+}$(co-domain) therefore $f(x)$ is undefined.
For $\alpha<-5$, range of $f(x)$ is subset of co-domain, hence $f(x)$ is into.
Therefore no such value of $\alpha$ exists.
82. (A)
$P R$ is parallel to $x$-axis $\Rightarrow P R$ is $y=7$
Also, $P Q \perp P R$ therefore $P Q$ is parallel to $y$-axis $\Rightarrow P Q$ is $x=9$
Hence point $P$ is $(9,7)$
Line ' $L$ ' intersect $Q R, P R \& P Q$ at $A, B$, and $C$ respectively
take $A R=x, A B=y$
and area $\Delta A B R=12 \Rightarrow \frac{1}{2} x y=12 \Rightarrow x y=24$
Take, $\angle \mathrm{PRQ}=\theta$ then, $\tan \theta=\frac{\mathrm{y}}{\mathrm{x}} \Rightarrow \frac{6}{8}=\frac{\mathrm{y}}{\mathrm{x}} \Rightarrow \frac{\mathrm{x}}{4}=\frac{\mathrm{y}}{3}$
but $x y=24$
$\Rightarrow \mathrm{x}=4 \sqrt{2}$ and $\mathrm{y}=3 \sqrt{2}$
$\Rightarrow \mathrm{BR}=5 \sqrt{2}$ and point B is $(1+5 \sqrt{2}, 7)$
Also, slope of $Q R$ is $\frac{-3}{4}$
$\Rightarrow$ Slope of $A B=\frac{4}{3}$


Therefore equation of line $L$ is $4 x-3 y=20 \sqrt{2}-17$
83. (B)

Let the equation be $x^{2}+y^{2}-9+\lambda(x+y-1)=0$
For the circle to be smallest the centre $\left(-\frac{\lambda}{2},-\frac{\lambda}{2}\right)$ must lie on $x+y=1$.
$\therefore \quad \lambda=-1$
$\therefore$ Equation is $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\mathrm{y}-8=0$
84. (C)

$$
\begin{aligned}
& \frac{1}{z}=5-x, y=29-\frac{1}{x} \\
& \therefore \quad x\left(29-\frac{1}{x}\right)=5-x \\
& \therefore \quad x=\frac{1}{5}, y=24, z=\frac{5}{24}
\end{aligned}
$$

85. (A)

Let equation to the circle be $(x-r)^{2}+(y-r)^{2}=r^{2}$
If it passes through $(a, b)$, then $a^{2}+b^{2}-2 r a-2 r b+r^{2}=0 \Rightarrow$
$r^{2}-2 r(a+b)+a^{2}+b^{2}=0$
$\therefore r_{1}+r_{2}=2(a+b) \& r_{1} r_{2}=a^{2}+b^{2}$
According to the given condition

$$
r_{1}^{2}+r_{2}^{2}=4 r_{1} r_{2} \Rightarrow a^{2}+b^{2}=4 a b
$$

86. (C)

Let perpendicular bisector of $A B$ is $3 x+4 y-20=0$
and perpendicular bisector of $A C$ is $8 x+6 y-65=0$.
Image of A w.r.t. $3 x+4 y-20=0$ is $B$
and image of $A$ w.r.t. $8 x+6 y-65=0$ is $C$.
For $\mathrm{B}, \frac{\mathrm{x}-10}{3}=\frac{\mathrm{y}-10}{4}=-2\left(\frac{30+40-20}{25}\right)$
$\Rightarrow \mathrm{B}=(-2,-6)$
For $\mathrm{C}, \frac{\mathrm{x}-10}{8}=\frac{\mathrm{y}-10}{6}=-2\left(\frac{80+60-65}{100}\right)$

$$
\Rightarrow C=(-2,1)
$$

$(-2,1)$


Area of $\triangle A B C=\frac{1}{2}(10+2)(1+6)=42$.
87. (A)
$\lim _{x \rightarrow 2^{-}} \frac{\cos (2 x-4)-33}{2}=-16$
$\lim _{x \rightarrow 2^{-}} \frac{x^{2}|4 x-8|}{x-2}=-16$
$\therefore$ By sandwich theorem $; \lim _{x \rightarrow 2^{-}} f(x)=-16$
88. (A)
$-1 \leq \sin x \leq 1$ then range of $f(x)$ is $[1 / 11,1 / 5]$
89. (D)

Given limit $=0+\left(2^{2}-1\right)+\left(3^{2}-1\right)+\ldots+\left(10^{2}-1\right)$

$$
=\sum_{n=2}^{10}\left(n^{2}-1\right)=\frac{10 \times 11 \times 21}{6}-1-9=385-10=375
$$

90. (C)

Let the circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$
Putting $x=t, y=\frac{1}{t}$

$$
\mathrm{t}^{2}+\frac{1}{\mathrm{t}^{2}}+2 \mathrm{gt}+2 \mathrm{f} \frac{1}{\mathrm{t}}+\mathrm{c}=0 \quad \Rightarrow \quad \mathrm{t}^{4}+2 g \mathrm{t}^{3}+\mathrm{ct}^{2}+2 \mathrm{ft}+1=0
$$

$\therefore \quad$ product of roots $=1$

