SOLUTIONS

WEEKLY TEST-6

RBPA

(JEE ADVANCED PATTERN)

Test Date: 11-11-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (C)

Anti Aromatic compounds having dimerization tendency
2. (C)

(I)

(II)

(III)
($8 \alpha-H$)
(1 $\alpha-H$)
(+M.E of $-\mathrm{NH}_{2}$, its resonating structure is more stable.)
3. (B)
4. (B)

Given, $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell) ; \Delta \mathrm{H}=-285.85 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-293.7 \mathrm{~kJ} / \mathrm{mol} \tag{ii}
\end{equation*}
$$

$\therefore \quad 1 \mathrm{gm}$ starch on combustion gives 17.49 kJ energy
$\therefore \quad 162 \mathrm{ngm}$ starch on combustion gives $=17.49 \times 162 \mathrm{nkJ}$ energy $=2833.38 \mathrm{nkJ}$
Molecular weight of starch $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}=162 \mathrm{n}$
Therefore,

$$
\begin{equation*}
\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}+6 \mathrm{nO}_{2} \longrightarrow 6 \mathrm{nCO}_{2}+5 \mathrm{nH}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-2833.38 \mathrm{nkJ} \tag{iii}
\end{equation*}
$$

Multiplying equation (ii) by 6 n and equation (i) by 5 n , then add
$5 \mathrm{nH}_{2}+\frac{5 \mathrm{n}}{2} \mathrm{O}_{2}+6 \mathrm{nC}+6 \mathrm{nO}_{2} \longrightarrow 5 \mathrm{nH}_{2} \mathrm{O}+6 \mathrm{nCO}_{2} \quad \Delta \mathrm{H}=-3191.45 \mathrm{n} \mathrm{kJ}$
Substracting equation (iii) from equation (iv)
$6 \mathrm{nC}+5 \mathrm{nH}_{2}+\frac{5 \mathrm{n}}{2} \mathrm{O}_{2} \longrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}} \quad \Delta \mathrm{H}=-358.07 \mathrm{nkJ}$
\therefore Heat of formation for 162 ngm starch $=-358.07 \mathrm{nkJ}$
\therefore Heat of formation for 1 gm starch $=\frac{-358.07 \mathrm{n}}{162 \mathrm{n}}=-2.21 \mathrm{~kJ}$
5. (C)

Given, $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}=-241 \mathrm{KJ}$
$\mathrm{C}_{6} \mathrm{H}_{10}+\frac{17}{2} \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}=-3800 \mathrm{KJ}$

$$
\mathrm{C}_{6} \mathrm{H}_{10}+9 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}=-3920 \mathrm{KJ}
$$

Equation (i) + (ii) - (iii)

$$
\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \quad \Delta \mathrm{H}=-121 \mathrm{KJ}
$$

\therefore Heat of hydrogenation of cyclohexene $=-121 \mathrm{KJ}$
6. (C)

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \Delta \mathrm{H}=4 \mathrm{kcal} \\
& \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \Delta \mathrm{H}=6 \mathrm{kcal} \Delta \mathrm{H} \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \Delta \mathrm{H}=-13.7 \\
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \\
& \Delta \mathrm{H}=-3.7 \mathrm{kcal}
\end{aligned}
$$

7. (D)
$\mathrm{PF}_{2} \mathrm{Cl}_{3}$ - Non-planar molecule
$\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ - Planar molecule

8. (D)

- Non-metals having gaint structure have high M.P. i.e. Si.
- Generally, M.P. \propto no. of unpaired electrons

9. (B)
10. (A), (B), (D)
$\ell n K=\frac{-\Delta H^{0}}{R . T}+\frac{\Delta S^{0}}{R}$
11. (B,C,D)

I \& II: Positional isomer
I \& III: Geometrical isomer (cis \& trans)
II and III: Positional isomers
12. (B, D)
(A) $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}-\mathrm{OH} \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$

Weak mono basic lewi's acid
(B) Equalibrium (i) is shifted in forward direction by the addition of syn-diols like-ethylene cly col which form a stable complex with $(\mathrm{O}+)_{4}^{-}$

(C) It ha a planer sheet like structure due to hydrogen bonding.
(D) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak electrolyte in water (due to pure water)
13. (A), (B), (C)
(A) $\mathrm{HA}(\mathrm{aq})+\mathrm{BOH}(\mathrm{aq}.) \longrightarrow \mathrm{BA}(\mathrm{aq})+.\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{h}$.

$$
\begin{aligned}
\Delta \mathrm{H}=\Delta_{\text {net }} \mathrm{H}+\left(\Delta \mathrm{H}_{\text {ionization }}\right)_{\mathrm{W} \cdot \mathrm{~A}} & =-57.3+15 \\
& =-42.3 \mathrm{~kJ}
\end{aligned}
$$

(B) $\mathrm{HA}(\mathrm{g}) \longrightarrow \mathrm{HA}($ aq. $) \quad \Delta \mathrm{H}=-70.7 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{BOH}(\mathrm{g}) \longrightarrow \mathrm{BOH}($ aq. $) \Delta \mathrm{H}=20 \mathrm{~kJ} / \mathrm{mol}$

$$
\frac{\mathrm{HA}(\mathrm{~g})+\mathrm{BON}(\mathrm{aq}) \longrightarrow \mathrm{BA}(\text { aq. })+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-42.3 \mathrm{~kJ} / \mathrm{mol}}{\mathrm{HA}(\mathrm{~g})+\mathrm{BOH}(\mathrm{~g}) \longrightarrow \mathrm{BA}(\text { aq. })+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-93 \mathrm{~kJ}}
$$

14. (D)
or $\frac{\mathrm{T}}{\mathrm{P}^{2 / 5}}=$ constant
or $\mathrm{T}=$ constant $\times \mathrm{P}^{2 / 5}$
$\therefore \mathrm{PV}=\mathrm{R} \times$ constant $\times \mathrm{P}^{2 / 5}$
$\therefore \frac{\mathrm{P}}{\mathrm{P}^{2 / 3}} \times \mathrm{V}=$ constant
$\mathrm{P}^{3 / 5} \times \mathrm{V}=$ constant
or $\mathrm{PV}^{5 / 3}=$ constant $\quad\left(\therefore \gamma=\frac{5}{3}\right.$ for He$)$
or $\mathrm{PV}^{\gamma}=$ constant
Thus, process is adiabatic $\therefore \mathrm{Q}=0$
15. (A)

Adiabatic slopes are more steeper than isothermal.
16. (D)
(A)

(B)

(C)

(D)

17. (C)

18. (B)

19. (6)

All statements are correct by their definition.
20. (2)

$$
\begin{array}{ll}
\log \left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \\
\log \left(\frac{10}{1}\right)=\frac{460.6}{2.303 \times 2}\left[\frac{1}{50}-\frac{1}{T_{2}}\right] & ; T_{2}=100 \mathrm{~K} \\
\frac{T_{2}}{T_{1}}=\frac{100}{50}=2 &
\end{array}
$$

21. (4)
22. (7)

Compounds (iii), (vi), (vii), (viii), (ix), (xi) \& (xiv) do not show geometrical isomerism
23. (6)

Gauche form

Anti form
$\mu_{\text {obs }}=2 D$

$$
\because X_{\text {anti }}=0.7 \therefore X_{\text {gauche }}=1-0.7=0.3
$$

$$
\Rightarrow \mu_{\mathrm{obs}}=\Sigma \mu_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \quad \Rightarrow 2=\mu_{\text {gauche }} \times 0.3+0.7 \times 0 \Rightarrow \mu_{\text {gauche }}=\frac{2}{0.3}=6.67 \mathrm{D}
$$

24. (6)

$$
\mathrm{n}=3
$$

No. of geometrical isomers $=2^{n-1}+2^{\frac{n-1}{2}}=6$
25. (6)
(II), (III), (IV), (VI), (VII), (X) are optically inactive due to presence of eighter plane of symmetry or centre of symmetry
(I), (V), (VIII) and (IX) are optically active due to presence of neighter plane of symmetry or centre of symmetry.
26. (3)

MP $\left({ }^{\circ} \mathrm{C}\right)$	BP $\left({ }^{\circ} \mathrm{C}\right)$	density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3})}\right.$
B 2076	3927	2.35
Al 660	2467	2.69
Ga 29.8	2237	5.9
In 157	2080	7.3
Tl 304	1457	11.8

27. (3)

28. (8)

Since in adiabatic process
$\mathrm{q}=0$; hence $\Delta \mathrm{U}=\mathrm{W}$
$W=\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times \frac{3}{2} \mathrm{R} \times \Delta \mathrm{T}$
$\frac{3}{2} R \cdot \Delta T=24$
$3 \cdot \Delta \mathrm{~T}=24$ ($\mathrm{R}=2$)
$\Delta \mathrm{T}=8$

MATHEMATICS

29. (B)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{|\cos x|} \cos |x| \frac{|x|}{x}>0 \\
& \Rightarrow x \cos |x|>0 \Rightarrow x \cos x>0
\end{aligned}
$$

30. (B)

We have $f(x)=x^{2} \sin \frac{1}{x}+x^{3} \cos \frac{1}{2 x} ; \quad f^{\prime}(x)$ has opposite signs is $\left[\frac{1}{2 \pi}, \frac{1}{\pi}\right]$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$ atleast once
Clearly $f(x)$ is continuous as well as differentiable in $\left[\frac{1}{3 \pi}, \frac{1}{\pi}\right]$
Also $\mathrm{f}\left(\frac{1}{3 \pi}\right)=0=\mathrm{f}\left(\frac{1}{\pi}\right) \quad$ (Only in this interval this will be true)
So, $f(x)$ satisfies Rolle's theorem.

$$
\text { Hence there exist some } \mathrm{c} \in\left(\frac{1}{3 \pi}, \frac{1}{\pi}\right) \text { such that } \mathrm{f}^{\prime}(\mathrm{c})=0 \text {. }
$$

31. (B)

$$
\frac{d y}{d x} \operatorname{at}(\alpha, \beta)=\frac{\alpha+\beta+1}{\alpha+\beta-1}
$$

32.

(B)

$$
\lim _{x \rightarrow \infty} x\left(1-x \ln \left(1+\frac{1}{x}\right)\right)
$$

put $x=1 / y$

$$
\begin{aligned}
& \lim _{y \rightarrow 0^{+}}\left(\frac{1}{y}-\frac{\ln (1+y)}{y^{2}}\right)=\lim _{y \rightarrow 0^{+}}\left(\frac{y-\ln (1+y)}{y^{2}}\right) \\
& =\lim _{y \rightarrow 0^{+}} \frac{\left(y-\left(y-\frac{y^{2}}{2}+\frac{y^{3}}{3} \cdots\right)\right)}{y^{2}}=\frac{1}{2}
\end{aligned}
$$

33. (D)

$$
\begin{aligned}
& \sum_{r=1}^{n} \tan ^{-1}\left(\frac{(r+1)!-r!}{1+(r+1)!\cdot r!}\right) \\
= & \sum_{r=1}^{n}\left(\tan ^{-1}(r+1)!-\tan ^{-1}(r!)\right)=\tan ^{-1}(n+1)!-\frac{\pi}{4}
\end{aligned}
$$

34. (D)
$(2 \cos \phi, \sin \phi)$
It lies inside of the circle
$\therefore \quad \mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}+3<0$
$-2<\cos \phi<-\frac{2}{3} \Rightarrow \pi-\alpha<\phi<\pi+\alpha$
35. (C)
$a=3 ; b=2$
Tangent: $\frac{x \cos \theta}{3}+\frac{y \sin \theta}{2}=1$
$x=0 ; y=2 \operatorname{cosec} \theta$
chord A'P : $y=\frac{2 \sin \theta}{3(\cos \theta+1)}(x+3)$
put $x=0, y=\frac{2 \sin \theta}{1+\cos \theta}=O M$

$$
\begin{aligned}
\text { Now } \mathrm{OQ}^{2}-\mathrm{MQ}^{2} & =\mathrm{OQ}^{2}-(\mathrm{OQ}-\mathrm{OM})^{2}=2(\mathrm{OQ})(\mathrm{OM})-\mathrm{OM}^{2}=\mathrm{OM}\{2(\mathrm{OQ})-(\mathrm{OM})\} \\
& =\frac{2 \sin \theta}{1+\cos \theta}\left[\frac{2 \times 2}{\sin \theta}-\frac{2 \sin \theta}{1+\cos \theta}\right]=4
\end{aligned}
$$

36. (B)

Let equation of circle be $\left(\frac{x^{2}}{a^{2}}+y^{2}-1\right)+\lambda\left(\frac{x^{2}}{b^{2}}+y^{2}-1\right)=0$

$$
\begin{aligned}
& x^{2}\left(\frac{1}{a^{2}}+\frac{\lambda}{b^{2}}\right)+y^{2}(1+\lambda)=1+\lambda \\
\Rightarrow & x^{2}\left(\frac{b^{2}+a^{2} \lambda}{a^{2} b^{2}(1+\lambda)}\right)+y^{2}=1
\end{aligned}
$$

Clearly the circle is $x^{2}+y^{2}=1$.
37. (A, D)

Let line is tangent at $\left(2 \mathrm{t}_{1}{ }^{3}, 3 \mathrm{t}_{1}{ }^{2}\right)$ and normal at $\left(2 \mathrm{t}_{2}{ }^{3}, 3 \mathrm{t}_{2}{ }^{2}\right),\left(\mathrm{t}_{1} \neq \mathrm{t}_{2}\right)$
$\left.\because \frac{d y}{d x}\right|_{\left(2 t_{1}{ }^{3}, 3 t_{1}{ }^{2}\right)}=\frac{1}{t_{1}}$
and slope of normal at $\left(2 t_{2}{ }^{3}, 3 t_{2}{ }^{2}\right)=-t_{2}$
$\Rightarrow \frac{1}{t_{1}}=-t_{2} \Rightarrow t_{2}=-\frac{1}{t_{1}}$.
$\Rightarrow \frac{1}{t_{1}}=\frac{3 t_{1}{ }^{2}-\frac{3}{t_{1}{ }^{2}}}{2 t_{1}{ }^{3}+\frac{2}{t_{1}{ }^{3}}}=\frac{3\left(t_{1}{ }^{2}-\frac{1}{t_{1}{ }^{2}}\right)}{2\left(t_{1}{ }^{3}+\frac{1}{t_{1}{ }^{3}}\right)}$
$=\frac{3 \cdot\left(t_{1}-\frac{1}{t_{1}}\right)\left(t_{1}+\frac{1}{t_{1}}\right)}{2\left(t_{1}+\frac{1}{t_{1}}\right)\left(t_{1}{ }^{2}-1+\frac{1}{t_{1}{ }^{2}}\right)}=\frac{3\left(t_{1}-\frac{1}{t_{1}}\right)}{2\left(t_{1}{ }^{2}-1+\frac{1}{t_{1}{ }^{2}}\right)}$
$\Rightarrow 2 t_{1}{ }^{2}-2+\frac{2}{t_{1}{ }^{2}}=3 t_{1}{ }^{2}-3$
$\Rightarrow 1=\mathrm{t}_{1}{ }^{2}-\frac{2}{\mathrm{t}_{1}{ }^{2}} \Rightarrow \mathrm{a}-\frac{2}{\mathrm{a}}=1$
(Put $\mathrm{t}_{1}{ }^{2}=\mathrm{a}($ say $\left.)(\mathrm{a}>0)\right)$

$$
\begin{aligned}
& \Rightarrow a^{2}-a-2=0 \Rightarrow(a-2)(a+1)=0 \\
& \Rightarrow a=2,-1 \because a \neq-1 \\
& \because a=2, t_{1}{ }^{2}=2, t_{1}= \pm \sqrt{2}
\end{aligned}
$$

\because equation of straight line are $x+\sqrt{2}(y-2)=0$ and $x-\sqrt{2}(y-2)=0$
38. (A, C)

$$
\ell=\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x) \sqrt{1+x}}{x^{3} \sqrt{1+x}(1+q x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x) \sqrt{1+x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x)\left(1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots\right)}{x^{3}}
$$

$$
\lim _{x \rightarrow 0} \frac{q x-\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{3}}{16}-p x-\frac{p x^{2}}{2}+\frac{p x^{3}}{8}}{x^{3}}
$$

Now cofficient of x and x^{2} must be $0 \Rightarrow q-p=\frac{1}{2} \& \frac{p}{2}=\frac{1}{8} \Rightarrow p=\frac{1}{4}, q=\frac{3}{4}$
$\therefore \ell=-\frac{1}{32}$
39. (B, C)
$\sin ^{-1}\left(a^{2} x^{2}+b^{2} y^{2}\right)+\cos ^{-1}|a x+b y|=\pi$
$\Rightarrow a^{2} x^{2}+b^{2} y^{2}=1$ and $a x+b y=0$
$\Rightarrow 2 \mathrm{axby}=-1$
40. (C, D)

Suppose edge-length of the square sheet is ℓ then volume of the box V is

$$
\begin{aligned}
& \mathrm{V}=(\ell-2 x)^{2} x \\
& =4 x^{3}-4 x^{2} \ell+\ell^{2} x \\
& \frac{\mathrm{dV}}{\mathrm{dx}}=12 \mathrm{x}^{2}-8 \ell \mathrm{x}+\ell^{2}=0 \\
& \Rightarrow \mathrm{x}=\frac{\ell}{2}, \frac{\ell}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} V}{d \mathrm{x}^{2}}=24 \mathrm{x}-8 \ell \\
& \frac{\mathrm{~d}^{2} V}{\mathrm{dx}^{2}}\left(\mathrm{x}=\frac{\ell}{2}\right)>0 \\
& \text { and } \frac{\mathrm{d}^{2} V}{\mathrm{dx}^{2}}\left(\mathrm{x}=\frac{\ell}{6}\right)<0
\end{aligned}
$$

therefore for maximum volume, $x=\frac{\ell}{6}$, but $x=10$
$\Rightarrow \ell=60$ units
Also maximum volume is $=40^{2} \times 10=16000$ square units
41. (A, B, C, D)
$m_{N}=1$ (slope of normal)
$\Rightarrow \tan \theta=\frac{3}{4}$
Hence equation of normal
$4 \sec \theta \cdot x-3 \operatorname{cosec} \theta \cdot y=16-9$ is $5 x-5 y=7$

Point $\mathrm{A} \equiv\left(\frac{7}{5}, 0\right)$ and $\mathrm{B} \equiv\left(0, \frac{-7}{5}\right)$
Area $\mathrm{A}=\frac{49}{50}$.
Hence [A] = 0 .
Solution of Paragraph for Q. No. 42, 43, 44
42. (C)
43. (A)
44. (A)

$$
\begin{align*}
& \mathrm{OS}_{1}=\mathrm{ae}=6, \mathrm{OC}=\mathrm{b} \\
& \text { Also } \mathrm{CS}_{1}=\mathrm{a} \Rightarrow \text { Area of } \Delta \mathrm{OCS}_{1}=\frac{1}{2} \mathrm{OS}_{1} \times \mathrm{OC} \\
& \Rightarrow \text { Semi - perimeter of } \Delta \mathrm{OCS}_{1}=\frac{1}{2}\left(\mathrm{OS}_{1}+\mathrm{OC}+\mathrm{CS}_{1}\right) \\
& \quad \frac{1}{2}(6+\mathrm{a}+\mathrm{b}) \tag{i}
\end{align*}
$$

\Rightarrow In radius of $\Delta \mathrm{OCS}_{1}=1$

$$
\begin{equation*}
\Rightarrow \frac{3 b}{\frac{1}{2}(6+a+b)}=1 \Rightarrow 5 b=6+a \tag{ii}
\end{equation*}
$$

Also $b^{2}=a^{2}-a^{2} e^{2}$

$$
\begin{equation*}
=a^{2}-36 \tag{iii}
\end{equation*}
$$

From (ii) we get

$$
\begin{aligned}
& 25\left(a^{2}-36\right)=36+a^{2}+12 a \\
\Rightarrow & 2 a^{2}-a-78=0 \Rightarrow a=\frac{13}{2},-6 \\
\Rightarrow & a=13 / 2 \text { and } b=5 / 2
\end{aligned}
$$

So Area of ellipse $=\pi \mathrm{ab}=\frac{65 \pi}{4}$ sq. units
Perimeter of $\Delta \mathrm{OCS}_{1}=6+\mathrm{a}+\mathrm{b}=6+\frac{13}{2}+\frac{5}{2}=15$ units
Equation of director circle is

$$
\begin{aligned}
& x^{2}+y^{2}=a^{2}+b^{2} \\
& \Rightarrow \quad x^{2}+y^{2}=\frac{97}{2} \\
& \Rightarrow \quad x^{2}+y^{2}=48.5
\end{aligned}
$$

45. (C)
$a=1$
$f(x)=8 x^{3}+4 x^{2}+2 b x+1$
$f^{\prime}(x)=24 x^{2}+8 x+2 b=2\left(12 x^{2}+4 x+b\right)$
for increasing function, $\quad f^{\prime}(x) \geq 0 \quad \forall x \in R$

$$
\therefore \quad D \leq 0 \quad \Rightarrow 16-48 b \leq 0 \quad \Rightarrow \quad b \geq \frac{1}{3}
$$

46. (B)

If $b=1$

$$
\begin{aligned}
& f(x)=8 x^{3}+4 a x^{2}+2 x+a \\
& f^{\prime}(x)=24 x^{2}+8 a x+2 \quad \text { or } \quad 2\left(12 x^{2}+4 a x+1\right)
\end{aligned}
$$

for non monotonic $\mathrm{f}^{\prime}(\mathrm{x})=0$ must have distinct roots

$$
\text { hence } D>0 \text { i.e. } 16 a^{2}-48>0 \Rightarrow \quad a^{2}>3 ; \quad \therefore \quad a>\sqrt{3} \text { or } a<-\sqrt{3}
$$

$\therefore \quad a \in 2,3,4, \ldots \ldots$.

$$
\text { sum = 5050-1 = } 5049 \text { Ans. }
$$

47. (3)
$f^{\prime}(x)=\left\{\begin{array}{l}3 a x^{2}+2 b x+c ; x>0 \\ -3 a x^{2}-2 b x-c ; x<0\end{array}\right.$
Clearly, no. of critical points of the function $f(x)$ is three.
48. (4)
$y=3-x^{2}$
$\left.\frac{d y}{d x}\right|_{T}=-2 x=-2 a$
equation of tangent at T is

$$
\begin{gathered}
y-\left(3-a^{2}\right)=-2 a(x-a) \\
2 a x+y=2 a^{2}+3-a^{2}=a^{2}+3 \\
y=0, x=\frac{a^{2}+3}{2 a} ; x=0, \quad y=a^{2}+3
\end{gathered}
$$

Area of OPQ $=\frac{1}{2} \cdot \frac{\left(a^{2}+3\right)^{2}}{2 a} ; \quad$ Letf $(a)=\frac{\left(a^{2}+3\right)^{2}}{4 a}$
$f^{\prime}(a)=\frac{1}{4}\left[\frac{2 a^{2} \cdot 2\left(a^{2}+3\right)-\left(a^{2}+3\right)^{2}}{a^{2}}\right]=0$
$\left(a^{2}+3\right)\left(4 a^{2}-a^{2}-3\right)=0$
$a^{2}=1 \Rightarrow a=1$ or -1
$\therefore \quad \mathrm{A}_{\text {min }}=\frac{16}{4}=4$ sq. units Ans.]
49. (3)
$\lim _{x \rightarrow 0}\left[\frac{\tan x}{x}\right]=1$
$f(x)=\frac{\tan x}{x}=1+\frac{x^{2}}{3}+\frac{2}{15} x^{4}+$

$$
\begin{aligned}
& \{f(x)\}=\frac{x^{2}}{3}+\frac{2}{15} x^{4}+\ldots \ldots \ldots . \\
& \therefore \quad \ln \left(\lim _{x \rightarrow 0}\left([f(x)]+x^{2}\right)^{\frac{1}{\{f(x)\}}}\right)=\ln \left(\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{\frac{1}{\{f(x)\}}}\right) \\
& =\ln \left(e^{\lim _{x \rightarrow 0} x^{2} \cdot \frac{1}{\{f(x)\}}}\right)=\lim _{x \rightarrow 0} \frac{x^{2}}{\frac{x^{2}}{3}+\frac{2}{15} x^{4}+\ldots}=3
\end{aligned}
$$

50. (2)

$$
x_{n+1}=\sqrt{2+x_{n}}
$$

or $\lim _{n \rightarrow \infty} x_{n+1}=\sqrt{2+\lim _{n \rightarrow \infty} x_{n}}$
or $t=\sqrt{2+t} \quad\left(\because \lim _{x \rightarrow \infty} x_{n+1}=\lim _{x \rightarrow \infty} x_{n}=t\right)$
or $t^{2}-t-2=0$
or $(\mathrm{t}-2)(\mathrm{t}+1)=0 \quad$ or $\mathrm{t}=2 \quad\left(\because \mathrm{x}_{\mathrm{n}}>\mathrm{o} \forall \mathrm{n}, \mathrm{t}>0\right)$
51. (6)

$$
\begin{aligned}
& \tan ^{-1} \frac{1}{\sqrt{2}}-\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} \sqrt{2}\right) \\
& \frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}
\end{aligned}
$$

52. (3)

Point $A\left(a, y_{1}\right)$ lies on C_{1} and C_{2}
hence $y_{1}=a^{2}-3$ and $y_{2}=k a^{2}$
$\Rightarrow \mathrm{a}^{2}-3=k \mathrm{a}^{2}$

$$
\begin{equation*}
\text { nowy }=k x^{2} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{kx} \tag{1}
\end{equation*}
$$

$$
\left.\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\left(\mathrm{a}, \mathrm{y}_{1}\right)}=2 \mathrm{ka}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{1-\mathrm{a}}\left(\text { But } \mathrm{y}_{2}=1-3=-2\right)
$$

$$
=\frac{-2-\left(\mathrm{a}^{2}-3\right)}{1-\mathrm{a}} \Rightarrow 2 \mathrm{ka}=\frac{1-\mathrm{a}^{2}}{1-\mathrm{a}}=1+\mathrm{a}
$$

$$
\begin{equation*}
2 k a=1+a \tag{2}
\end{equation*}
$$

Substituting $k=\frac{a^{2}-3}{a^{2}}$ from (1) in (2) we get $\frac{2 a\left(a^{2}-3\right)}{a^{2}}=1+a \Rightarrow 2 a^{2}-6=a+a^{2}$ $\Rightarrow a^{2}-a-6=0 \quad \Rightarrow \quad a=+3, a=-2$ (rejected) $]$
53. (5)

Put $\mathrm{x}=\cos \theta, \mathrm{y}=\frac{1}{3} \sin \theta$
Let $u=3 x^{2}-27 y^{2}+24 x y$
$u=3 \cos 2 \theta+4 \sin 2 \theta$

$$
-5 \leq u \leq 5 .
$$

54. (9)

$$
\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \Rightarrow e^{2}=1-\frac{5}{9}=\frac{4}{9} \Rightarrow e=\frac{2}{3}
$$

One end of latus rectum is $(2,5 / 3)$
Equation of tangent at $(2,5 / 3)$ is $\frac{2 x}{9}+\frac{y}{3}=1$.
F and F^{\prime} be foci.
Area of $\triangle \mathrm{CPQ}=\frac{1}{2} \times \frac{9}{2} \times 3=\frac{27}{4}$ sq, units

\Rightarrow Area of quadrilateral $=\lambda=4 \times \frac{27}{4}=27$

$$
\Rightarrow \quad \frac{\lambda}{3}=9
$$

55. (1)

The chord of contact of tangents from (h, k) to $y^{2}=4 x$ is $k y=2(x+h)$. If it is a tangent to the hyperbola $x^{2}-y^{2}=1$, then $4 h^{2}+K^{2}=4$, therefore, locus is $\frac{x^{2}}{1}+\frac{y^{2}}{4}=1$.
56. (2)
$(x-y)^{2}-(x+y+1)=0$
$\Rightarrow(x-y+\lambda)^{2}-x-y-1-\lambda^{2}-2 \lambda(x-y)=0$
$\Rightarrow(\mathrm{x}-\mathrm{y}+\lambda)^{2}-\mathrm{x}(1+2 \lambda)-\mathrm{y}(1-2 \lambda)-\lambda^{2}-1=0$

We take value of λ such that $x-y+\lambda=0$ and $-x(1+2 \lambda)-y(1-2 \lambda)-\lambda^{2}-1=0$ may be perpendicular.
$\therefore-(1+2 \lambda)+(1-2 \lambda)=0 \therefore \lambda=0$
$\therefore\left(\frac{\mathrm{x}-\mathrm{y}}{\sqrt{2}}\right)^{2}=\frac{\sqrt{2}}{2}\left(\frac{\mathrm{x}+\mathrm{y}+1}{} \sqrt{2}\right)=\frac{1}{\sqrt{2}}\left(\frac{\mathrm{x}+\mathrm{y}+1}{\sqrt{2}}\right)$
Therefore, length of the latus rectum $=\frac{1}{\sqrt{2}}$
$\therefore 4 \ell^{2}=4 \cdot \frac{1}{2}=2$

Alter

The given equation is a parabola since $h^{2}=1, a b=1 \quad \therefore h^{2}=a b$
$\therefore \mathrm{x}-\mathrm{y}=0$ is perpendicular to $\mathrm{x}+\mathrm{y}+1=0$
So, $x-y=0$ is the equation of axis and $x+y+1=0$ is equation of tangent at the vertex.
$\therefore\left(\frac{\mathrm{x}-\mathrm{y}}{\sqrt{2}}\right)^{2}=\frac{1}{\sqrt{2}}\left(\frac{\mathrm{x}+\mathrm{y}+1}{\sqrt{2}}\right)$
\therefore Length of the latus rectum $(\ell)=\frac{1}{\sqrt{2}}$
$\therefore 4 \ell^{2}=4 \times \frac{1}{2}=2$

PHYSICS

57. (C)
$H=\frac{1}{2} g(2 t)^{2}=2 g t^{2}$
$\mathrm{h}=\mathrm{H}-\frac{1}{2} \mathrm{gt}^{2}$
By (1) and (2)
h $=\mathrm{H}-\frac{\mathrm{H}}{4}=\frac{3 \mathrm{H}}{4}$
58. (B)
$R=u \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=12 \sqrt{\frac{10}{10}}=12 \mathrm{~m}$
$\therefore S=\sqrt{\mathrm{R}^{2}+\mathrm{r}^{2}}=13 \mathrm{~m}$
59. (C)
60. (A)
$u^{2}=5 g R$
$\therefore v^{2}=u^{2}-2 g R$
$=5 g R-2 g R=3 g R$
Tangential acceleration at B is

$$
a_{t}=g \text { (downwards) }
$$

Centripetal acceleration at B is
$\mathrm{a}_{\mathrm{C}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=3 \mathrm{~g}$
\therefore Total acceleration will be
$a=\sqrt{a_{C}^{2}+a_{t}^{2}}=g \sqrt{10}$
61. (A)
$\mathrm{x}=2 \mathrm{t} \quad \Rightarrow \mathrm{V}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=2$
$y=2 t^{2} \quad \Rightarrow v_{y}=\frac{d y}{d t}=4 t$
$\therefore \quad \tan \theta=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}}=\frac{4 \mathrm{t}}{2}=2 \mathrm{t}$
Differentiating with respect to time we get,
$\left(\sec ^{2} \theta\right) \frac{\mathrm{d} \theta}{\mathrm{dt}}=2$
or $\left(1+\tan ^{2} \theta\right) \frac{\mathrm{d} \theta}{\mathrm{dt}}=2 \quad$ or $\left(1+4 \mathrm{t}^{2}\right) \frac{\mathrm{d} \theta}{\mathrm{dt}}=2 \quad$ or $\quad \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{2}{1+4 \mathrm{t}^{2}}$
$\frac{\mathrm{d} \theta}{\mathrm{dt}}$ at $\mathrm{t}=2 \mathrm{~s}$ is $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{2}{1+4(2)^{2}}=\frac{2}{17} \mathrm{rad} / \mathrm{s}$
62. (D)

Potential of shell A is,
$V_{A}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{4 \pi \mathrm{a}^{2} \sigma}{\mathrm{a}} \frac{-4 \pi \mathrm{~b}^{2} \sigma}{\mathrm{~b}} \frac{+4 \pi \mathrm{c}^{2} \sigma}{\mathrm{c}}\right)$

$$
=\frac{\sigma}{\epsilon_{0}}(a-b+c)
$$

Potential of shell C is,
$\mathrm{V}_{\mathrm{C}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{4 \pi \mathrm{a}^{2} \sigma}{\mathrm{c}} \frac{-4 \pi \mathrm{~b}^{2} \sigma}{\mathrm{c}} \frac{+4 \pi \mathrm{c}^{2} \sigma}{\mathrm{c}}\right)$

$$
=\frac{\sigma}{\epsilon_{0}}\left(\frac{\mathrm{a}^{2}}{\mathrm{c}}-\frac{\mathrm{b}^{2}}{\mathrm{c}}+\mathrm{c}\right)
$$

As $V_{A}=V_{C}$
$\therefore \quad \frac{\sigma}{\epsilon_{0}}(a-b+c)=\frac{\sigma}{\epsilon_{0}}\left(\frac{\mathrm{a}^{2}}{\mathrm{c}} \frac{-\mathrm{b}^{2}}{\mathrm{c}}+\mathrm{c}\right)$
or $\mathrm{a}-\mathrm{b}=\frac{(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})}{\mathrm{c}}$ or $\mathrm{a}+\mathrm{b}=\mathrm{c}$
63. (A)
$E_{x}=-\frac{\partial V}{\partial x} \hat{i}=-2 x \hat{i}$
$\mathrm{E}_{\mathrm{y}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{y}} \hat{\mathrm{j}}=+2 \hat{\mathrm{y}} \quad \therefore \mathrm{E}=2(-\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}})$
Hence electric field lines should be straight line in $x-y$ plane.
64. (D)

max string through the cube $=\sqrt{3} a$
$\phi .=\frac{\Sigma \mathrm{q}}{\epsilon_{0}}=\frac{\sqrt{3} \lambda \mathrm{a}}{\epsilon_{0}}$
65. (C,D)
66. (A, D)

Before switching

$V_{A}=\frac{\mathrm{kq}_{\mathrm{A}}}{\mathrm{R}}+\frac{\mathrm{kq}_{\mathrm{B}}}{2 \mathrm{R}}=2 \mathrm{~V}$
$V_{B}=\frac{\mathrm{kq}_{\mathrm{B}}}{2 \mathrm{R}}+\frac{\mathrm{kq}_{\mathrm{A}}}{2 \mathrm{R}}=\frac{3}{2} \mathrm{~V}$
By the help of these two equation $\frac{q_{A}}{q_{B}}$ can be find out.

After switching

Shell B become earthed and its potential become zero.

$V_{B}=\frac{\mathrm{kq}_{\mathrm{B}}^{\prime}}{2 \mathrm{R}}+\frac{\mathrm{kq}_{\mathrm{A}}^{\prime}}{2 \mathrm{R}}=0$
$q_{A}^{\prime}=-q_{B}^{\prime}$
$\frac{\mathrm{q}_{\mathrm{A}}^{\prime}}{\mathrm{q}_{\mathrm{B}}^{\prime}}=\frac{-1}{1}$
Charge on A remain conserved
$\therefore \mathrm{q}_{\mathrm{A}}^{\prime}=\mathrm{q}_{\mathrm{A}}$

$$
q_{B}^{\prime}=-q_{A}
$$

$V_{A}=\frac{\mathrm{kq}_{\mathrm{A}}}{\mathrm{R}}-\frac{\mathrm{kq}_{\mathrm{A}}}{2 \mathrm{R}}=\frac{\mathrm{kq}_{\mathrm{A}}}{2 \mathrm{R}}$
Using (1) and (2) we can find out V_{A}.
67. (A, B, C)

Potential of innermost shell is zero.
$\therefore \frac{\mathrm{q}_{1}}{\mathrm{r}}+\frac{\mathrm{q}_{2}}{2 \mathrm{r}}+\frac{\mathrm{q}_{3}}{3 \mathrm{r}}=0$
or, $6 q_{1}+3 q_{2}+2 q_{3}=0$
Similarly, potential on outermost shell is also zero.
$\therefore \frac{\mathrm{q}_{1}}{3 \mathrm{r}}+\frac{\mathrm{q}_{2}}{3 \mathrm{r}}+\frac{\mathrm{q}_{3}}{3 \mathrm{r}}=0$
or, $q_{1}+q_{3}=-q_{2}$
Solving equations (1) and (2), we get

$$
q_{1}=-\frac{q_{2}}{4}, \frac{q_{3}}{q_{1}}=3
$$

and, $\frac{\mathrm{q}_{3}}{\mathrm{q}_{2}}=-\frac{3}{4}$
\therefore The options (A), (B) and (C) are correct.
68. (C, D)
69. (A,B,C)
70. (C)

$$
\left.\begin{gathered}
\mathrm{y}=\mathrm{y}_{0}+\mathrm{u}_{\mathrm{y}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{y}} \mathrm{t}^{2} \\
\mathrm{y}=\mathrm{y}_{0} \mathrm{tv}_{0} \sin \theta \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}
\end{gathered} \right\rvert\, \text { where } \mathrm{y}_{0}=9.8 \mathrm{~m}
$$

This is parabola opening downward

71. (D)
$v_{y}=u_{y}+a_{y} t$
$v_{y}=u \sin \theta-g t$
This is straight line with negative slope

72. (D)
$y=y_{0}+u_{y} t+\frac{1}{2} a_{y} t^{2}$
$2=9.8+(5 \mathrm{gm} \mathrm{30}) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$-7.8=\frac{5}{2} \mathrm{t}-\frac{9.8}{2} \mathrm{t}^{2}$
$9.8 \mathrm{t}^{2}-5 \mathrm{t}-15.6=0$
$t=\frac{5 \pm \sqrt{25+4 \times 15.6 \times 9.8}}{19.6}$
$\mathrm{t}=\frac{5+\sqrt{25+62.4 \times 9.8}}{19.6}$
$\mathrm{t}=\frac{5+\sqrt{87.4 \times 9.8}}{19.6}$
$\mathrm{t}=1.54 \mathrm{sec}$.
73. (C)
74. (D)
75. (5)

Assume given sphere is solid, potential V_{1} at P is to be calculated. But in cavity there is no charge therefore potential V_{2} due to charge assumed in cavity must be subtracted from V_{1}.

Charge on solid sphere $=\frac{4}{3} \pi R^{3} \times \rho$

$$
=\frac{5}{3} \times 10^{-10} \mathrm{cb}
$$

Potential at P can be calculated say V_{1}
$V_{2}=$ Potential due to cavity sphere

$$
=\frac{\frac{4}{3} \pi \mathrm{r}^{3} \rho}{4 \pi \varepsilon_{0} \mathrm{a}}=0.24 \mathrm{~V}
$$

Potential at $P=V_{1}-V_{2}=35.16$ volt
76. (9)

Angular momentum about A is conserved as $\tau_{\text {external }}=0$
$m v \sin 30^{\circ} \times R=v_{1} \times m \times r_{\text {min }}$
$\frac{R v}{2}=\frac{1}{\sqrt{3}} \times r_{\text {min }}$

$$
r_{\min }=\frac{\sqrt{3} R}{2}=\frac{\sqrt{3} \times 6 \sqrt{3}}{2}=9 \mathrm{~cm}
$$

77. (5)

Force on a charge -q in an electric field

$$
\overrightarrow{\mathrm{F}}=-\mathrm{q} \overrightarrow{\mathrm{E}}
$$

This force acts in a direction opposite to $\overrightarrow{\mathrm{E}}$. Therefore the particle, initially placed at rest, will move opposite to \vec{E} under the action of force. Obviously, direction of \vec{V} will be opposite to \vec{E}.

Now $\overrightarrow{\mathrm{V}}=10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$ (given)
unit vector in the direction of $\overrightarrow{\mathrm{V}}$,

$$
\begin{aligned}
& \overrightarrow{\mathrm{V}}=\frac{10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}}{\sqrt{(10)^{2}+(-10)^{2}}} \\
&=\frac{10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}}{10 \sqrt{2}} \\
& \therefore \overrightarrow{\mathrm{~V}}=\frac{\mathrm{i}}{\sqrt{2}}-\frac{\mathrm{j}}{\sqrt{2}}
\end{aligned}
$$

So unit vector opposite to $\overrightarrow{\mathrm{V}}$, i.e. in the direction of

$$
\overrightarrow{\mathrm{E}}=-\frac{\hat{\mathrm{i}}}{\sqrt{2}}+\frac{\hat{\mathrm{j}}}{\sqrt{2}}
$$

Magnitude of \vec{E} is 10 N/C (given)
Therefore $\overrightarrow{\mathrm{E}}=10\left[-\frac{\hat{\mathrm{i}}}{\sqrt{2}}+\frac{\hat{\mathrm{j}}}{\sqrt{2}}\right)$
The surface of area Am^{2} has been placed in the $x-z$ plane so that its area vector can be expressed as,
$\overrightarrow{\mathrm{A}}=\mathrm{Aj}(\overrightarrow{\mathrm{A}}$ being normal to $x-z$ plane, will be along y-axis)
Electric flux, in case of a uniform electric field,

$$
\begin{aligned}
\phi & =\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{~A}}=10\left[-\frac{\hat{\mathrm{i}}}{\sqrt{2}}+\frac{\hat{\mathrm{j}}}{\sqrt{2}}\right] \cdot \mathrm{A} \hat{\mathrm{j}} \\
& =\frac{10 \mathrm{~A}}{\sqrt{2}}=5 \sqrt{2} \mathrm{~A} \mathrm{Nm}^{2} / \mathrm{C}
\end{aligned}
$$

78. (4)
$q V_{a}=q V_{b}+\frac{1}{2} m v^{2}$
$2.0 \times 10^{-9} \times 9 \times 10^{9}\left[\frac{3 \times 10^{-9}}{1}-\frac{3 \times 10^{-9}}{2}\right] \times 100$
$=2.0 \times 10^{-9} \times 9 \times 10^{9}\left[-\frac{3 \times 10^{-9}}{1}+\frac{3 \times 10^{-9}}{2}\right] \times 100+\frac{1}{2} \times 5.0 \times 10^{-9} \mathrm{v}^{2}$
$10^{-9} \times 1800\left[\frac{3}{2}\right] \times 100=18 \times 10^{-9} \times 100\left[-\frac{3}{2}\right]+\frac{1}{2} \times 5.0 \times 10^{-9} v^{2}$
$1800\left[\frac{3}{2}+\frac{3}{2}\right]=\frac{1}{2} \times 5.0 \times \mathrm{v}^{2}$
$\frac{1800 \times 6}{5}=v^{2}$
$360 \times 6=v^{2}$
$6 \times 6 \times 10 \times 6=v^{2}$
$12 \sqrt{15}=v$
79. (2)

Flux through cube $=\frac{\mathrm{q}}{8 \varepsilon_{0}}$
Flux through face (1) is zero
flux through each

(2) (3) (5) each is $\frac{1}{3} \frac{\mathrm{q}}{8 \varepsilon_{0}}=\frac{\mathrm{q}}{24 \varepsilon_{0}}$

Flux (2) and (3) combine is $=2 \times \frac{\mathrm{q}}{24 \varepsilon_{0}}=\frac{\mathrm{q}}{12 \varepsilon_{0}}$
80. (5)
$v_{C}^{2}=v_{A}^{2}+2 a_{t} S$
Tangential acceleration :
$a_{t}=\frac{v_{C}^{2}-v_{A}^{2}}{2 \mathrm{~s}}=1.447 \mathrm{~m} / \mathrm{s}^{2}$
Normal acceleration at C is
$\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{v}^{2}}{\mathrm{r}_{\mathrm{C}}}=2.41 \mathrm{~m} / \mathrm{s}^{2}$

Tangential force at C

$$
F_{t}=m a_{t}=1500 \times 1.447=2170 \mathrm{~N}
$$

Normal force at C

$$
\begin{aligned}
F_{n} & =m a_{n} \\
& =1500(2.41)=3620 \mathrm{~N}
\end{aligned}
$$

Total force at C

$$
\begin{aligned}
& F=\sqrt{F_{n}^{2}+F_{t}^{2}} \\
& F=\sqrt{(2170)^{2}+(3620)^{2}} \\
& F=4220 \mathrm{~N}
\end{aligned}
$$

81. (6)
$\mathrm{F}_{\mathrm{E}}=\mathrm{qE}=11 \mathrm{~N}$
$\mathrm{F}_{\mathrm{g}}=\mathrm{mg}=5 \mathrm{~N}$
So Net force $=F=6 \mathrm{~N}$ upward
$g_{\text {eff }}=\frac{F}{m}=\frac{6}{0.5} 12 \mathrm{~m} / \mathrm{s}^{2}$
so $V_{\text {min }}=\sqrt{5 \mathrm{~g}_{\text {eff }} \ell}=\sqrt{5 \times 12 \times\left(60 \times 10^{-2}\right)}$
so $V_{\text {min }}=6 \mathrm{~m} / \mathrm{sec}$
82. (8)

$$
\begin{aligned}
& \mathrm{U}=-\int \overrightarrow{\mathrm{F}} \cdot \mathrm{dr} \\
& \mathrm{U}=-\frac{\mathrm{km}}{\mathrm{r}} \\
& \mathrm{~K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}} \\
& \frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{Km}}{\left(\frac{\mathrm{R}}{2}\right)}=0-\frac{\mathrm{Km}}{3 \mathrm{R} / 2} \\
& \frac{\mathrm{mv}^{2}}{2}=\frac{2 \mathrm{Km}}{\mathrm{R}}-\frac{-2 \mathrm{Km}}{3 \mathrm{R}} \\
& \frac{\mathrm{mv}}{2}=\frac{4 \mathrm{Km}}{3 \mathrm{R}} \\
& \mathrm{~V}=\sqrt{\frac{8 \mathrm{~K}}{3 \mathrm{R}}}, \mathrm{~V}=8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

83. (4)

Area under $P-x$ graph $=\int P d x=\int\left(\frac{m d N}{d t}\right) v d x$
$=\int_{1}^{v} \mathrm{mv}^{2} \mathrm{dv}=\left[\frac{\mathrm{mv}^{3}}{3}\right]_{1}^{\mathrm{V}}=\frac{10}{7 \times 3}\left(\mathrm{v}^{3}-1\right)$
from graph, area $=\frac{1}{2} \times(2+4) \times 10=30$
from (1) \& (2)
$\frac{10}{7 \times 3}\left(\mathrm{v}^{3}-1\right)=30$
$\Rightarrow \mathrm{v}=4 \mathrm{~m} / \mathrm{s}$
84. (0)
$W_{\text {net }}=\Delta K$
$\Rightarrow\left(F \sin \theta \cdot \ell-m g \ell(1-\cos \theta)=\frac{1}{2} m v^{2}\right.$
where $\theta=37^{\circ}, F=\frac{\mathrm{mg}}{3}$
$\Rightarrow \mathrm{v}=\left\{\frac{2 \ell}{5 \mathrm{~m}}(3 \mathrm{~F}-\mathrm{mg})\right\}^{\frac{1}{2}}=0$

