Solutions

PROGRESS TEST-5

RBA

(JEE ADVANCED PATTERN)
 Test Date: 11-11-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1 st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

CHEMISTRY

1. (B)

PV = nRT
$P=3170 \mathrm{~Pa}, \quad V=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$,
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \quad \mathrm{~T}=300 \mathrm{~K}$
\therefore From eqn.

$$
\begin{align*}
& 3170 \times 10^{-3}=\mathrm{n} \times 8.314 \times 300 \tag{1}\\
& \mathrm{n}=1.27 \times 10^{-3} \mathrm{~mol}
\end{align*}
$$

2. (D)
3. (B)
4. (C)
$2^{3}=8$.
5. (B)

6. (D)

7. (C)

If $2 s-2 p$ mixing is not considered for Li_{2} to N_{2}
$\sigma_{1 s}^{2} \sigma_{1 s}^{*} \sigma_{2 s}^{2} \sigma_{2 \mathrm{~s}}^{*} \sigma_{2 p_{z}}^{2}\left(\pi_{2 p_{x}}^{1}=\pi_{2 p_{y}}^{1}\right)$
$\left(\pi_{2 p_{x}}^{*}=\pi_{2 p_{y}}^{*}\right) \sigma 2 p_{z}$
$\mathrm{C}_{2} \rightarrow$ total $\mathrm{e}^{-}=12$
8. (A)

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{cycle}}+\mathrm{w}_{\text {cycle }}=0 \Rightarrow \mathrm{w}_{\text {cycle }}=-5 \mathrm{~J} \\
& \mathrm{w}_{\mathrm{AB}}+\mathrm{w}_{\mathrm{BC}}+\mathrm{w}_{\mathrm{CA}}=-5 \\
& -10(2-1)+0+\mathrm{w}_{\mathrm{CA}}=-5 \\
& \mathrm{w}_{\mathrm{CA}}=+5 \mathrm{~J}
\end{aligned}
$$

9. (A, B, C)

Cooling effect is observed when the real gas undergoes adiabatic expansion below the inversion tempeature.
10. (B), (C)
11. (A, C, D)

Equivalent weight $=\frac{\text { Molecular weight }}{n-\text { factor }}$
(A) n-factor of $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$as acid $=1$ as base $=1$

In both case, eq. wt. of $\mathrm{H}_{2} \mathrm{PO}_{3}=\frac{81}{1} \Rightarrow 81$
(B) n-factor of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$as acid $=1$ or 2

$$
\text { as base }=1
$$

(C) In acidic medium

Eq. wt. of $\mathrm{KMnO}_{4}=\frac{\text { Molecular weight }}{5}$
In basic medium
Eq. wt. of $\mathrm{KMnO}_{4}=\frac{\text { Molecular weight }}{1}$
In neutral/slightly basic medium
Eq. wt. of $\mathrm{KMnO}_{4}=\frac{\text { Molecular weight }}{3}$
(D) $\mathrm{In} \mathrm{MgH}_{2}$, O.S. of $\mathrm{H}=-1$

In $\mathrm{H}_{2} \mathrm{O}_{2}$, O. S. of $\mathrm{H}=+1$
12. (A, B, C)
(A) When (Na) sedium react with excess ammonia give a blue colour paramagnetic solution.
(B) $\mathrm{K}+\mathrm{O}_{2} \longrightarrow \underset{ }{\downarrow} \mathrm{KO}_{2}$

Paramagnetic
(C) $3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
(Dilute)
Where NO is paramagnetic
(D)

(2 - Ethyle anthraquinol)
Where $\mathrm{H}_{2} \mathrm{O}_{2}$ is Diamagnetic
13. (9)
(1)

(2)

(3)

(4)

(5) \square
(6) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$
(7) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(8) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(9) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
14. (4)
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
(2)

(3)

(4)

15. (2)
$\left.\begin{array}{l}{\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}}\end{array}\right)$ are not affected by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
16. (3)

$$
\begin{aligned}
\Delta \mathrm{H} & =\mathrm{nC} \Delta \mathrm{~T} \\
& =8 \times \frac{3}{2} \times 8.31 \times 30=3000 \mathrm{~J}=3 \mathrm{~kJ}
\end{aligned}
$$

17. (4)
$\mathrm{M}_{2} \mathrm{O}_{\mathrm{x}}$ (Metallic oxide) $+\mathrm{H}_{2} \longrightarrow \mathrm{M}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell)$
0.220 g
0.045 g
$\Rightarrow \mathrm{POAC}$ on O
$\Rightarrow\left(\frac{0.220}{2 M+16 x}\right) x=\left(\frac{0.045}{18} \times 1\right)$
$\Rightarrow 3.96 x=0.09 M+0.72 x$
$\Rightarrow E=\frac{M}{x}=36$
$\frac{E}{9}=4$
18. (5)
$\ddot{\mathrm{N}} \mathrm{H}_{2}-\ddot{\mathrm{N}} \mathrm{H}_{2}$ is a monodontate ligands due to formation of unstable chelation and all other compounds are chelating ligands.
19. $(A-q, s) ;(B-r) ;(C-p, t) ;(D-t)$
20. $(A-r),(B-s) ;(C-p) ;(D-q)$

PHYSICS

21. Applying Snell's law between the points O and P, we have
$2 \times \sin 60^{\circ}=\left(\sin 90^{\circ}\right) \times \frac{2}{\left(1+H^{2}\right)}$,

$$
2 \times \frac{\sqrt{3}}{2}=1 \times \frac{2}{\left(1+H^{2}\right)}
$$

$\left(1+H^{2}\right)=\frac{2}{\sqrt{3}}, \quad H=\sqrt{\left(\frac{2}{\sqrt{3}}-1\right)}$
$\therefore \quad(\mathrm{A})$
22. Apparent position of the object w.r.t lens.
$u=\left(\frac{10}{1}+\frac{10}{2}\right)=15 \mathrm{~cm}$
$\frac{1}{15}+\frac{1}{v}=\frac{2(1.5-1)}{R}$
$v=7.5 \mathrm{~cm}$
\therefore (A)
23. (B)

Take the mass m as a point mass. At the instant when the pendulum collides with the nail, m has a velocity $\mathrm{v}=\sqrt{2 \mathrm{~g} \ell}$. The angular momentum of the mass with respect to the point at which the nail locates is conserved during the collision. Then the velocity of the mass is still \mathbf{v} at the instant after the collision and the motion thereafter is such that the mass is constrained to rotate around the nail. Under the critical condition that the mass can just swing completely round in a circle, the gravitational force when the mass is at the top of the circle. Let the velocity of the mass at this instant be \mathbf{v}_{1}, and we have

$$
\begin{aligned}
\frac{\mathrm{mv}_{1}^{2}}{\ell-\mathrm{d}} & =\mathrm{mg}, \\
\text { or } \quad \mathrm{v}_{1}^{2} & =(\ell-\mathrm{d}) \mathrm{g}
\end{aligned}
$$

The energy equation

$$
\frac{\mathrm{mv}^{2}}{2}=\frac{\mathrm{mv}_{1}^{2}}{2}+2 \mathrm{mg}(\ell-\mathrm{d})
$$

or

$$
2 \mathrm{~g} \ell=(\ell-\mathrm{d}) \mathrm{g}+4(\ell-\mathrm{d}) \mathrm{g}
$$

then gives the minimum distance as

$$
\mathrm{d}=\frac{3 \ell}{5}
$$

24. (A) The plumb-line is so set up that the resultant of its weight mg and the tension in the thread T produces a centripetal force $F=m \omega^{2} R$ (fig.). Clearly $R=r+\ell \sin \alpha$. Therefore,
$\omega^{2}=\frac{\mathrm{g} \tan \alpha}{\mathrm{r}+\ell \sin \alpha}, \omega=\sqrt{\frac{\mathrm{g} \tan \alpha}{\mathrm{r}+\ell \sin \alpha}}$.

25. As $F_{1}-F_{2}<2 \mu M g$, so system will not accelerate. Again here $F_{1}>F_{2}$, so block A is the driving block and block B is driven block. So friction on block A acts towards left but in the block B it may act left or right.
\therefore (B)
26. (A)
27. The equivalent capacitance

$$
\begin{aligned}
& C=\frac{4 \pi \varepsilon_{0}(3 a \times 4 a)}{(4 a-3 a)}+4 \pi \varepsilon_{0}(4 a) \\
& =64 \pi \varepsilon_{0} a
\end{aligned}
$$

\therefore (A)
28. $\therefore \quad C_{\text {eq }}=3 / 2 \mu \mathrm{~F}$

Charge flow $\Delta q=C_{\text {eq }}\left(10-\frac{15}{3}\right)=\frac{3}{2} \times 5=7.5 \mu \mathrm{C}$
\therefore (B)
29. (C,D)
30. (B,C)

When current is maximum then it is possible when this is the circuit.

$\mathrm{i}=24 \mathrm{amp}$
Now, no current flow through AB.
Therefore potential difference between A and B is zero.
Current is minimum only this is the circuit

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=6+1+4.5+0.5=12 \Omega \\
& \mathrm{i}=\frac{24}{12}=2 \mathrm{Amp} \\
\therefore & \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=1 \times 1=1 \mathrm{volt}
\end{aligned}
$$

31. Area $=\frac{1}{2} \times 10 \times(6+4)=\frac{v^{2}}{2}$
$v=10 \mathrm{~m} / \mathrm{s}$
Area upto $30 \mathrm{~m}=\frac{1}{2} \times 30 \times 6=\frac{v^{2}}{2}$
$v^{2}=180$
$\mathrm{v}_{\text {max }}=\sqrt{180}<14$
\therefore (B) and (C)
32. When $t=3$ s block just about to move and acceleration
of block given by $a=\frac{t-2}{1} \quad t>3$
$\int_{0}^{v} d v=\int_{3}^{10}(t-2) d t$
$v=\frac{t^{2}}{2}-\left.2 t\right|_{3} ^{10}=(50-20)-\left(\frac{9}{2}-6\right)$
$=30+1.5=31.5 \mathrm{~m} / \mathrm{s}$
$\therefore \quad(A)(B)$ and (C)

33. (5)

If C doesn't move then $\mathrm{a}_{\mathrm{A}}=4 \mathrm{a}_{\mathrm{B}} \ldots$ (i)
$P-T-\mu m g=m 4 a_{B} \ldots$ (ii)
$4 \mathrm{~T}-\mathrm{mg}=\mathrm{ma}_{\mathrm{B}} \ldots$ (iii)
$\therefore \frac{\mathrm{p}}{\mathrm{mg}}=5$
34. (8)
$U=-\int \vec{F} \cdot \overrightarrow{d r}$
$\mathrm{U}=-\frac{\mathrm{km}}{\mathrm{r}}$
$\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$
$\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{Km}}{\left(\frac{\mathrm{R}}{2}\right)}=0-\frac{\mathrm{Km}}{3 \mathrm{R} / 2}$
$\frac{m v^{2}}{2}=\frac{2 K m}{R}-\frac{-2 K m}{3 R}$

$\frac{m v^{2}}{2}=\frac{4 \mathrm{Km}}{3 \mathrm{R}}$
$\mathrm{V}=\sqrt{\frac{8 \mathrm{~K}}{3 \mathrm{R}}}, \mathrm{V}=8 \mathrm{~m} / \mathrm{s}$
35. (6)
$\mathrm{F}_{\mathrm{E}}=\mathrm{qE}=11 \mathrm{~N}$
$F_{g}=m g=5 N$
So Net force $=F=6 \mathrm{~N}$ upward
$g_{\text {eff }}=\frac{F}{m}=\frac{6}{0.5} 12 \mathrm{~m} / \mathrm{s}^{2}$
so $\mathrm{V}_{\text {min }}=\sqrt{5 \mathrm{~g}_{\text {eff }} \ell}=\sqrt{5 \times 12 \times\left(60 \times 10^{-2}\right)}$
so $\mathrm{V}_{\text {min }}=6 \mathrm{~m} / \mathrm{sec}$
36. (2)
$|\Phi|=\frac{q}{\varepsilon_{0}}\left(1-\frac{1}{\sqrt{1+(R / l)^{2}}}\right)$. The sign of Φ depends on how the direction of the normal to the circle is chosen.
37. (4)
$q V_{a}=q V_{b}+\frac{1}{2} m v^{2}$
$2.0 \times 10^{-9} \times 9 \times 10^{9}\left[\frac{3 \times 10^{-9}}{1}-\frac{3 \times 10^{-9}}{2}\right] \times 100$
$=2.0 \times 10^{-9} \times 9 \times 10^{9}\left[-\frac{3 \times 10^{-9}}{1}+\frac{3 \times 10^{-9}}{2}\right] \times 100+\frac{1}{2} \times 5.0 \times 10^{-9} \mathrm{v}^{2}$
$10^{-9} \times 18\left[\frac{3}{2}\right] \times 100=18 \times 10^{-9} \times 100\left[-\frac{3}{2}\right]+\frac{1}{2} \times 5.0 \times 10^{-9} v^{2}$
$1800\left[\frac{3}{2}+\frac{3}{2}\right]=\frac{1}{2} \times 5.0 \times \mathrm{v}^{2}$
$\frac{1800 \times 6}{5}=v^{2}$
$360 \times 6=v^{2}$
$6 \times 6 \times 10 \times 6=v^{2}$
$12 \sqrt{15}=v$
38. (3)
$\frac{6}{u}=1+\frac{(v+u) \times 1-6}{(v-u)}$
$\frac{6}{u}=\frac{(v-u)+(v+u)-6}{(v-u)}$
$\frac{6}{u}=\frac{2 v-6}{(v-u)} \quad \Rightarrow \quad 6(v-u)=2 v u-6 u \quad \Rightarrow 6 v-6 u=2 v u-64$
$u=3 \mathrm{~km} / \mathrm{h}$
39. $\mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{s}$
40. $A \rightarrow q ; B \rightarrow p ; C \rightarrow r ; D \rightarrow q$

In parallel current distributes in inverse ratio of resistor. Hence, distribution of current in different resistors is as shown in figure.
For power generation apply $P=i^{2} R$.
$\mathrm{i}_{\mathrm{R}_{3}}=\frac{\mathrm{PD}}{\mathrm{R}}=\frac{10}{4}=2.5 \mathrm{~A}$

$\mathrm{i}_{\mathrm{R}_{4}}=\frac{\mathrm{PD}}{\mathrm{R}}=\frac{5}{2}=2.5 \mathrm{~A}$

MATHEMATICS

41. (D)

Let $\log _{3} n=\mathrm{x}$

$$
y=5 x^{2}-12 x+9
$$

y is minimum at $x=-\frac{b}{2 a}=\frac{12}{10}=\frac{6}{5}$

Here $\quad \log _{3} n=\frac{6}{5} \quad \Rightarrow n=3^{6 / 5} \cong 3.70$
which is not natural hence minimum occurs at the closest integer

$$
\text { now } \begin{array}{ll}
& 4>3^{6 / 5} \\
& 4^{5}>3^{6}
\end{array}
$$

$1024>729$ which is true
42. (B)
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(h)+|x| h+x \cdot h^{2}}{h}$

Also $x=y=0 \Rightarrow f(0)=0$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(h)-f(0)}{h}+|x|+x h\right)$
$\Rightarrow f^{\prime}(x)=f^{\prime}(0)+|x|$
43. (A)
$f(x)=\sqrt{1+x \sqrt{1+(x+1)(x+3)}}=\sqrt{1+x(x+2)}=(x+1) \quad \therefore f^{\prime}(x)=1$
44. (A)
$\sin ^{2} x \cos ^{2} x-\cos ^{2} x \sin ^{4} x=1$
$\Rightarrow \sin ^{2} x \cos ^{2} x\left(1-\sin ^{2} x\right)=1$
$\Rightarrow \sin ^{2} x \cos ^{4} x=1$, No value of ' x '
45. (C)

For $x=\alpha \in Q^{c}, f(\alpha)=0$ and $\operatorname{Lim}_{x \rightarrow \alpha} f(x)$ is also zero because if x moves towards α and attaining irrational value then it is zero, or if attaining rational value then the denominator can be made as large as possible.
46. (C)

$$
f(x)= \begin{cases}-g(x) & x<-3 \\ 0 & x=-3 \\ g(x) & -3<x<-2 \\ 0 & x=-2 \\ -g(x) & -2<x<-1 \\ 0 & x=-1 \\ g(x) & x>-1\end{cases}
$$

47. (D)

The image of A in $y=x$ will lie on $B C$
$A^{\prime}=(5,4)$
$A D \perp B C$
$2\left(\frac{4-k}{5-h}\right)=-1 \Rightarrow 8-2 k=-5+h$

$\because h=k$
$\therefore \mathrm{h}=\mathrm{k}=\frac{13}{3}$
48. (D)

Let $P \equiv(a \cos \theta, a \sin \theta)$
and centroid of $\triangle A P B$ be (h, k).
Then $\mathrm{h}=\frac{\mathrm{a} \cos \theta+0+\mathrm{a}}{3}, \mathrm{k}=\frac{\mathrm{a} \sin \theta+\mathrm{a}+0}{3}$
$\Rightarrow \cos \theta=\frac{3 h}{a}-1, \sin \theta=\frac{3 k}{a}-1$
$\because \sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{aligned}
& \Rightarrow\left(\frac{3 h}{a}-1\right)^{2}+\left(\frac{3 k}{a}-1\right)^{2}=1 \\
& \Rightarrow 9 h^{2}+9 k^{2}-6 a h-6 a k+a^{2}=0
\end{aligned}
$$

so locus of centroid is
$9 x^{2}+9 y^{2}-6 a x-6 a y+a^{2}=0$
49. (A, D)

Let us take distance between paralle sides ℓ then $\mathrm{BM}+\mathrm{AL}=5$

$\Rightarrow \sqrt{25-\ell^{2}}+\sqrt{20-\ell^{2}}=5 \quad \Rightarrow \ell=4 \quad \Rightarrow \mathrm{AL}=2, \mathrm{BM}=3$
hence area of trapezium is
$=5 \times 4+\frac{1}{2} \times 3 \times 4+\frac{1}{2} \times 2 \times 4=30$ sq. units
Also, $\tan \mathrm{A}=\frac{4}{2}=2 \Rightarrow \mathrm{~A}=\tan ^{-1} 2$
Now, area of region enclosed by locus of

$$
\mathrm{P} \text { is }=2 \times(10+5+5+2 \sqrt{5})+\pi(2)^{2}+30=70+4(\sqrt{5}+\pi)
$$

50. (B,C,D)

Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \equiv\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$.
Tangent at this point is $\mathrm{yt}=\mathrm{x}+\mathrm{at}^{2}$.
Any point on this tangent is $\left(\mathrm{h}, \frac{\mathrm{h}+\mathrm{at} \mathrm{t}^{2}}{\mathrm{t}}\right)$.
Chord of contact with respect to the circle is $h x+\left(\frac{h+a t^{2}}{t}\right) y=a^{2}$
i.e. $\left(\right.$ aty $\left.-a^{2}\right)+h\left(x+\frac{y}{t}\right)=0$

Which is the family of the straight lines passing through the point of intersection of ty $-\mathrm{a}=0$, and $\mathrm{x}+\frac{\mathrm{y}}{\mathrm{t}}=0$.
So the fixed point is $\left(-\frac{a}{t^{2}}, \frac{a}{t}\right)$
$\therefore \mathrm{x}_{2}=-\frac{\mathrm{a}}{\mathrm{t}^{2}}$ and $\mathrm{y}_{2}=\frac{\mathrm{a}}{\mathrm{t}}$
51. (A, B, C, D)
(A) $\sin \left(\frac{11 \pi}{12}\right) \cdot \sin \left(\frac{5 \pi}{12}\right)=\sin \left(\frac{\pi}{12}\right) \cdot \cos \left(\frac{\pi}{12}\right)=\frac{1}{2} \sin \left(\frac{\pi}{6}\right)=\frac{1}{4} \in \mathrm{Q}$
(B)
$\operatorname{cosec}\left(\frac{9 \pi}{10}\right) \cdot \sec \left(\frac{4 \pi}{5}\right)=-\operatorname{cosec}\left(\frac{\pi}{10}\right) \cdot \sec \left(\frac{\pi}{5}\right)=\frac{1}{\sin 18^{\circ} \cdot \cos 36^{\circ}}=\frac{-16}{(\sqrt{5}-1)(\sqrt{5}+1)}=-4 \in Q$
(C) $\sin ^{4}\left(\frac{\pi}{8}\right)+\cos ^{4}\left(\frac{\pi}{8}\right)=1-\frac{1}{2} \sin ^{2}\left(\frac{\pi}{4}\right)=1-\frac{1}{4}=\frac{3}{4} \in Q$
(D) $2 \cos ^{2} \frac{\pi}{9} \cdot 2 \cos ^{2} \frac{2 \pi}{9} \cdot 2 \cos ^{2} \frac{4 \pi}{9}=8\left(\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}\right)^{2}=\frac{1}{8} \in Q$
52. (A, C, D)

$$
\begin{aligned}
& {\left[f(x)=\operatorname{Lim}_{n \rightarrow \infty} x\left\{\frac{3}{2}+[\cos x]\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-3 n+1}\right)\right\}\right.} \\
& =\frac{3 x}{2}+x \cdot[\cos x] \cdot \operatorname{Lim}_{n \rightarrow \infty}\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-3 n+1}\right) \\
& =\frac{3 x}{2}+x[\cos x] \cdot \operatorname{Lim}_{n \rightarrow \infty} \frac{n^{2}+1-\left(n^{2}-3 n+1\right)}{\sqrt{n^{2}+1}+\sqrt{n^{2}-3 n+1}} \\
& =\frac{3 x}{2}+x[\cos x] \cdot \frac{3}{2}=\frac{3 x}{2}(1+[\cos x])[\cos x]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
0 & x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\} \\
1 & x=0 \\
-1 & x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)
\end{array}\right.
$$

$f(x)=\left[\begin{array}{ll}\frac{3 x}{2} & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\frac{3 \pi}{2}\end{array} \quad \therefore\right.$ Graph of $f(x)$ in $\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$

From the graph it is clear that options (A), (C) and (D) are correct]
53. (7)

Centre of the given circle $\mathrm{O}(4,-3)$
The circumcircle of $\triangle P A B$ is $(x-2)(x-4)+(y-3)(y+3)=0$

$\Rightarrow x^{2}+y^{2}-6 x-1=0$
Director circle of ellipse is
$(x+5)^{2}+(y-3)^{2}=9+b^{2}$
From (i) and (ii) applying condition of orthogonality, we get
$2[(-3)(5)+0(-3)]=-1+25-b^{2}$
$\Rightarrow b^{2}=54 \Rightarrow[b]=7$
54 (4)
Suppose $p x+q y=1$ intersect the parabola $y^{2}=4 a x a t\left(a t^{2}, 2 a t\right)$ then

$$
\mathrm{pat}^{2}+\mathrm{q} \times 2 \mathrm{at}=1 \quad \Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}=\frac{-2 \mathrm{aq}}{\mathrm{pa}}=\frac{-2 \mathrm{q}}{\mathrm{p}}
$$

but we know that for co-normal points $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right)$
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0 \Rightarrow \mathrm{t}_{3}=\frac{2 \mathrm{q}}{\mathrm{p}}$
Hence 3rd point is $\left(\frac{4 a q^{2}}{p^{2}}, \frac{4 a q}{p}\right) \Rightarrow m=4$
55. (2)

$$
a=\min \left\{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right\}
$$

where $P\left(x_{1}, y_{1}\right)$ lies on $y=\sqrt{x-1} \Rightarrow y^{2}=x-1$, y being positive
and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ lies on $\mathrm{y}=\mathrm{x}^{2}+1$
Here value of ' a ' can be obtained if $P Q$ is common normal to $y^{2}=x-1$ and $y=x^{2}+1$.
Two parabolas are image of each other in the line $y=x$
therefore slope of common normal is -1
Here, $x_{1}-1=\frac{1}{4}(-1)^{2} \Rightarrow x_{1}=5 / 4$
and $y_{1}=-\frac{1}{2}(-1)=\frac{1}{2}$
Hence P is $\left(\frac{5}{4}, \frac{1}{2}\right) \Rightarrow Q$ is $\left(\frac{1}{2}, \frac{5}{4}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{PQ}=\sqrt{\left(\frac{5}{4}-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}-\frac{5}{4}\right)^{2}}=\sqrt{2 \times \frac{9}{16}}=\frac{3}{2 \sqrt{2}} \\
& \Rightarrow \mathrm{a}=\mathrm{PQ}^{2}=\frac{9}{8} \text { hence, } \sqrt{2 \sqrt{2 \mathrm{a}}+1}=2
\end{aligned}
$$

56. (2)

In the triangle, $\tan \mathrm{A} \cdot \tan \mathrm{B} \cdot \tan \mathrm{C}=\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}$
or $\frac{1}{2} \cdot\left(\frac{2 k+1}{2}\right)\left(\frac{4 k+1}{2}\right)=\frac{3}{2}+3 k$
or $\frac{8 k^{2}+6 k+1}{8}=\frac{3+6 k}{2} \Rightarrow 8 k^{2}+6 k+1=12+24 K \Rightarrow 8 k^{2}-18 k-11=0$
$(2 k+1)(4 k-11)=0 \Rightarrow k=-\frac{1}{2}$ or $k=\frac{11}{4} \quad \therefore[k]=2$
57. (4)

Three vertices lies on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=25$
Let orthocentre is $\mathrm{H}(\mathrm{h}, \mathrm{k})$ then
$\mathrm{h}=5 \sin \theta+5 \cos \theta+3 \quad \mathrm{k}=5 \sin \theta-5 \cos \theta+4$
Hence $\sin \theta=\frac{\mathrm{h}+\mathrm{k}-7}{10}, \cos \theta=\frac{\mathrm{h}-\mathrm{k}+1}{10} \Rightarrow(\mathrm{~h}+\mathrm{k}-7)^{2}+(\mathrm{h}-\mathrm{k}+1)^{2}=100$
$\Rightarrow(x+y-7)^{2}+(x-y+1)^{2}=100 \quad \therefore \quad \alpha=-7, \beta=1, \gamma= \pm 10$ and $|\gamma|+\alpha+\beta=4$
58. (6)

Take \angle QPT $=\theta$
than $\sin \theta=\frac{R S}{P S}=\frac{r}{3 r}=\frac{1}{3} \quad \Rightarrow \cos \theta=\frac{2 \sqrt{2}}{3}$

$$
\begin{array}{ll}
\Rightarrow \frac{\mathrm{PT}}{\mathrm{PQ}}=\frac{2 \sqrt{2}}{3} & \Rightarrow \frac{\mathrm{PT}}{12}=\frac{2 \sqrt{2}}{3} \\
\Rightarrow \mathrm{PT}=8 \sqrt{2} & \Rightarrow \mathrm{~m}=8, \mathrm{n}=2
\end{array}
$$

59. $(A-r) ;(B-s) ;(C-p) ;(D-q)$
A. Eqn. of tangent at $(2 \cos \theta, \sqrt{3} \sin \theta)$ is $\frac{x}{2} \cos \theta+\frac{y}{\sqrt{3}} \sin \theta=1$. Mid point (h, k) of portion of tangent between coordinate axes is $\left(\sec \theta, \frac{\sqrt{3}}{2} \operatorname{cosec} \theta\right)$
$\therefore \mathrm{h}=\sec \theta, \mathrm{k}=\frac{\sqrt{3}}{2} \operatorname{cosec} \theta$

$$
\Rightarrow \frac{1}{\mathrm{~h}^{2}}+\left(\frac{\sqrt{3}}{2 \mathrm{k}}\right)^{2}=1 \Rightarrow \frac{4}{\mathrm{~h}^{2}}+\frac{3}{\mathrm{k}^{2}}=4
$$

B. Eqn. of chord having mid point $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{4}+\frac{y y_{1}}{3}=\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}$

Eqn of pair of lines joining origin to extremities of the chord is
$\frac{x^{2}}{4}+\frac{y^{2}}{3}=1\left(\frac{\frac{\mathrm{xx}_{1}}{4}+\frac{\mathrm{y} \mathrm{y}_{1}}{3}}{\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}}\right)^{2}$
The lines are mutually perpendicular
$\therefore \quad$ coeff. of $\mathrm{x}^{2}+$ coeff of $\mathrm{y}^{2}=0$
$\Rightarrow \frac{1}{4}\left(\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}\right)^{2}-\frac{x_{1}^{2}}{16}+\frac{1}{3}\left(\frac{x_{1}^{2}}{4}+\frac{\mathrm{y}_{1}^{2}}{3}\right)^{2}-\frac{\mathrm{y}_{1}^{2}}{9}=0 \Rightarrow 7\left(\frac{\mathrm{x}_{1}^{2}}{4}+\frac{\mathrm{y}_{1}^{2}}{3}\right)^{2}=12\left(\frac{\mathrm{x}_{1}^{2}}{16}+\frac{\mathrm{y}_{1}^{2}}{9}\right)$
C. Eqn. of chord of contact from (h, k) is $\frac{h x}{4}+\frac{k y}{3}=1$ which passes through the focus $(1,0)$ or $(-1,0)$
$\therefore \quad \pm \frac{\mathrm{h}}{4}=1 \Rightarrow \mathrm{~h}^{2}=16$
D. Eqn. of normal at $(2 \cos \theta, \sqrt{3} \sin \theta)$ is $2 x \sec \theta-\sqrt{3} y \operatorname{cosec} \theta=2^{2}-\sqrt{3}^{2}=1$

Eqn. of chord with mid point $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{4}+\frac{y y_{1}}{3}=\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}$
Comparing (1) and (2), $\frac{2 \sec \theta}{x_{1} / 4}=-\frac{\sqrt{3} \operatorname{cosec} \theta}{y_{1} / 3}=\frac{1}{\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}}$
$\Rightarrow \cos \theta=\frac{8}{x_{1}}\left(\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}\right), \sin \theta=\frac{3 \sqrt{3}}{y_{1}}\left(\frac{x_{1}^{2}}{4}+\frac{y_{1}^{2}}{3}\right)$
$\Rightarrow\left(\frac{64}{\mathrm{x}_{1}^{2}}+\frac{27}{\mathrm{y}_{1}^{2}}\right)\left(\frac{\mathrm{x}_{1}^{2}}{4}+\frac{\mathrm{y}_{1}^{2}}{3}\right)^{2}=1$
60. $(A-q) ;(B-r) ;(C-p) ;(D-s)$

Equation of tangent to parabola $=y=m x+\frac{a}{m}$ which passes through $P(6,5) \Rightarrow m=\frac{1}{2}$ or $\frac{1}{3}$ points of contact Q and $R=(4,4)$ and $(9,6)$ and area of $\triangle P Q R=\frac{1}{2}$
$C_{2}:(x-9)^{2}+(y-6)^{2}+\lambda(x-3 y+9)=0 ; C_{1}:(x-4)^{2}+(y-4)^{2}+\mu(x-2 y+4)=0$ now $C_{2} \& C_{1}$ pass through $(1,0)$
$C_{2}: x^{2}+y^{2}-28 x+18 y+27=0 ; C_{1}: x^{2}+y^{2}+13 x+2 y+12=0$
Centroid of $\triangle \mathrm{PQR}$ is $\left(\frac{19}{3}, 5\right)$

