SOLUTIONS

MEAITS 2018

UNIT TEST-2

(MAIN \& ADVANCED PATTERN)

Test Date: 04-11-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

JEE MAIN

PHYSICS

1. (C)

By Newton's $2^{\text {nd }}$ law
$\vec{F}=m \vec{a}$
$\hat{F}=\hat{a}$
2. (C)

No force in horizontal direction so no component of Tension in horizontal direction
3. (D)

Work done by action-reaction pair of normal is zero
For two charges work done by action-reaction may be positive or negative
4. (A)

Mass of the system $=(50+25) \mathrm{kg}=75 \mathrm{~kg}$
$\mathrm{acc}^{\mathrm{n}}=2 \mathrm{~m} / \mathrm{s}^{2}$
$3 F-75 g=75 \times 2$
$F=\frac{900}{3}=300 \mathrm{~N}$
5. (D)
$F=\frac{-d U}{d x}$
At $E, \frac{d U}{d x}=(+)$ ve so F is $(-)$ ve
6. (D)

Tension in spring will remain constant and equal to 3 mg .
So, $a_{A}=0$
$B \& C$ are connected by a string so acceleration of both are same.
Tension in $\mathrm{A}-\mathrm{B}$ is 3 mg

$a=\frac{m g}{2 m}=\frac{g}{2}$
7. (D)

Limiting friction between A and $\mathrm{B}=60 \mathrm{~N}$
Limiting friction between B and $C=90 N$
Limiting friction between C and ground $=50 \mathrm{~N}$
Since limiting friction is least between C and ground, slipping will occur at first between C and ground. This will occur when $\mathrm{F}=50 \mathrm{~N}$
8. (A)

$$
\begin{aligned}
& d w=\vec{F} \cdot \overrightarrow{d s} \\
& =(4 y \hat{i}+2 x \hat{j}) \cdot(d x \hat{i}+d y) \hat{j} \\
& \begin{array}{l}
\int d w=\int 4 y d x+\int 2 x d y \\
y=2 x+1 \\
d y=2 d x
\end{array} \\
& w=\int 4 y \frac{d y}{2}+\int 2 x 2 d x \\
& =\int_{1}^{5} 2 y d y+\int_{0}^{2} 4 x d x \\
& =\left.y^{2}\right|_{1} ^{5}+\left.2 x^{2}\right|_{0} ^{2} \\
& =(25-1)+2 \times 4 \\
& =24+8=32 \mathrm{~J}
\end{aligned}
$$

9. (A)

In frame of 1

$v_{2 / 1}=2 \sqrt{7}$

So, in ground in

$v=\sqrt{(2 \sqrt{7})^{2}+(\sqrt{7})^{2}+2 \times 2 \sqrt{7} \times \sqrt{7} \cos 60^{\circ}}$
$=\sqrt{28+7+14}$
$=\sqrt{49}=7 \mathrm{~m} / \mathrm{s}$
So distance travelled in 1 s is 7 m
10. (B)

For any small section of path,

$$
\Delta \mathrm{K}=\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\text {gravity }}+\mathrm{W}_{\text {friction }}
$$

$\mathrm{O}=\mathrm{dw}_{\mathrm{F}}-\mathrm{mg} \sin \theta \mathrm{ds}-\mu \mathrm{mg} \cos \theta \mathrm{ds}$

$$
=\mathrm{dw}_{\mathrm{F}}-\mathrm{mgdh}-\mu \mathrm{mgd} \ell
$$

$$
\mathrm{dw}_{1}=\mathrm{mgdh}+\mu \mathrm{mgdl}
$$

Work done by F from A to B is
$\mathrm{w}_{1}=\mathrm{mgh}+\mu_{1} \mathrm{mg} \ell_{1}$
Work done by F from B to C is
$\mathrm{w}_{2}=-\mathrm{mgh}+\mu_{2} \mathrm{mg} \ell_{2}$
$\mathrm{w}=\mathrm{w}_{1}+\mathrm{w}_{2}=\mu_{1} \mathrm{mg} \ell_{1}+\mu_{2} \mathrm{mg} \ell_{2}$
11. (C)

Consider a small element of spring of length $d x$ at a distance of x from fixed end. The K.E. of this small element is given by
$d K=\frac{1}{2}\left(\frac{m}{L} d x\right)\left(\frac{v_{0} x}{L}\right)^{2}$
$K . E_{\text {total }}=\int d K=\int_{0}^{L} \frac{m d x}{2 L}\left(\frac{x}{L} v_{0}\right)^{2}=\frac{m v_{0}^{2}}{6}$
12. (A)

The limiting friction for m_{1} and m_{2} are $f_{L 1}=6 \mathrm{~N}$ and $f_{L 2}=10 \mathrm{~N}$ respectively. At $t=2 \mathrm{~s}$ the situation would be like as shown

for $\left(m_{1}\right), 4=f_{1}+T$
As friction will be compensated first, so $f_{1}=4 \mathrm{~N}$
And $\mathrm{T}=0$
For $\mathrm{m}_{2}, \mathrm{f}_{2}=5 \mathrm{~N}$
13. (B)

F.B.D. of system is as shown in fig.

Limiting value of f_{1} and f_{2} are 4 N and 6 N resp. As $1 . g=f_{L 1}+f_{L 2}$ the system is just one the verge sliding and friction are demitting in nature.

$$
\begin{aligned}
& \mathrm{T}_{1}=1 . \mathrm{g}=10 \mathrm{~N}, \mathrm{kx}+\mathrm{f}_{\mathrm{L} 1}=\mathrm{T}_{1} \Rightarrow \mathrm{kx}=10-4=6 \mathrm{~N} \\
& \mathrm{x}=.06 \mathrm{~m}
\end{aligned}
$$

14. (A)
15. (A)

As the cart is moving up with constant velocity the FBD at sphere with respect to cart or with respect to ground would be same and would be like as shown in fig.

In this situation tension balances gravity force \& hence string is vertical
16. (D)
in interfance redistribution of energy takes place.
17. (C)
$I_{R}=I_{1}+I_{2}+2 \sqrt{I} \sqrt{I_{2}} \cos \Delta \phi$
18. (A)

Wave front is locus of the points which are in same phase.
19. (B)

When I_{0}
$\mathrm{I}_{\text {max }}=4 \mathrm{I}_{0}$
$I_{\text {min }}=0$
$k_{1}=4$
When

$$
\begin{aligned}
& \mathrm{A} \rightarrow \frac{\mathrm{I}_{0}}{4}, \mathrm{~B}=\mathrm{I}_{0} \\
& \begin{aligned}
\mathrm{K}_{2} & =\left(\sqrt{\frac{\mathrm{I}_{0}}{4}}+\sqrt{\mathrm{I}_{0}}\right)^{2}-\left(\frac{\sqrt{\mathrm{I}_{0}}}{\sqrt{4}}-\sqrt{\mathrm{I}_{0}}\right)^{2} \\
& =\frac{9}{4} \mathrm{I}_{0}-\frac{1}{4} \mathrm{I}_{0} \\
& =2 \mathrm{I}_{0} \\
\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}} & =2
\end{aligned}
\end{aligned}
$$

20. (B)

Optical path is more than real path
Central maxima will shift toward glass slab.
21. (A)

Let S_{1}^{\prime} and $S^{\prime}{ }_{2}$ are the points on the wave front from where perpendicular can be drawn through S_{1} and S_{2}

$$
\begin{aligned}
& S_{1}^{\prime} S_{2}+(\mu-1) t+S_{2} E=S_{1}^{\prime} S_{1}+S_{1} E \\
\Rightarrow & \left(O^{\prime}{ }_{2}-\mathrm{OS}_{2}\right)+(\mu-1) t+\sqrt{D^{2}+d^{2}}=\left(\mathrm{OS}_{1}^{\prime}-O S_{1}\right)+D \\
\Rightarrow & (\mu-1) t=\left(O S_{2}-O S_{1}\right)-\left(\sqrt{D^{2}+d^{2}}-D\right) \\
\Rightarrow & 2 \lambda-\frac{d^{2}}{2 D} \text { (Binomial approximation) } \\
\Rightarrow & \mathrm{t}=\frac{31 \lambda}{8}
\end{aligned}
$$

22. (D)

Huygen's principle can also prove snell's law \& law of reflection.
23. (A)

Optical path $=\mu \mathrm{t}$
$\mu \times 4=6 \times \frac{4}{3}$
$\mu=2$
24. (D)

$$
\begin{aligned}
& \beta=\frac{\lambda D}{d} \Rightarrow \beta_{1}=\frac{400 \times 1 \times 10^{-9}}{0.1 \times 10^{-3}}=4 \mathrm{~mm} \\
& \beta_{2}=\frac{560 \times 1 \times 10^{-9}}{0.1 \times 10^{-3}}=5.6 \mathrm{~mm}
\end{aligned}
$$

25. (A)

If unpolarised light is passed through a Polaroid P_{1}, its intensity will become half So, $I_{1}=\frac{I_{0}}{2}$ with vibrations parallel to the axis of P_{1}
Now this light will pass though the Analyzer
$\mathrm{I}_{\mathrm{R}}=\left(\frac{\mathrm{I}_{0}}{2}\right) \cos ^{2} 30^{\circ}=\frac{\mathrm{I}_{0}}{2} \times\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{8} \mathrm{I}_{0}$
So the fractional transmitted $=\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}=\frac{3}{8}=37.5 \%$
26. (A)

Since the reflected light is very highly polarized, it implies that incident light falls at polarizing angle of incidence (from Brewster's law.)

$$
\begin{aligned}
& \mu=\tan \theta_{P} \\
& \therefore \quad \theta_{P}=\tan ^{-1} \mu=\tan ^{-1}\left(\frac{4}{3}\right)=53^{\circ}
\end{aligned}
$$

Since θ_{P} is the angle which the rays from sun make with the normal of the interface, angle with the interface will be $90^{\circ}-53^{\circ}=37^{\circ}$
27. (C)

$C \cos i=a \mid C \sin i=b$
$C \cos r=e \quad C \sin r=d$
$\frac{\sin i}{\sin r}=\frac{b}{d}$
$\mu_{\mathrm{a}} \sin \mathrm{i}=\mu_{\mathrm{w}} \sin r \frac{\mu_{\mathrm{w}}}{\mu_{\mathrm{a}}}=\frac{\mathrm{b}}{\mathrm{d}}$
28. (B)

$$
\begin{aligned}
\ell_{1}+\ell_{2} & =\ell_{2} \cos 2 \theta+\ell_{2} \\
& =\ell_{2}(1+\cos 2 \theta) \\
& =\mathrm{d} \sec \theta\left(1+2 \cos ^{2} \theta-1\right) \\
& =2 \mathrm{~d} \cos \theta \\
\ell_{1}+\ell_{2} & =\frac{\lambda}{2} \text { for constructive interference at } P \\
2 \mathrm{~d} \cos \theta & =\frac{\lambda}{2} \\
\cos \theta & =\frac{\lambda}{4 \mathrm{~d}}
\end{aligned}
$$

(due to reflection from denser medium there is a phase different of π)
29. (A)

Let us first calculate the limiting and kinetic friction between various surfaces.
Between 3 kg and ground

$$
f_{\ell_{1}}=f_{k_{1}}=\mu_{1}(2+3) g=0.1 \times 5 g=5 \mathrm{~N}
$$

Between 2kg \& 3kg

$$
\mathrm{f}_{\ell_{2}}=\mathrm{f}_{\mathrm{k}_{2}}=\mu_{2} 2 \mathrm{~g}=.2 \times 2 \times 10=4 \mathrm{~N}
$$

Let us $1^{\text {st }}$ assume that both blocks move together with Common acceleration a

$$
\mathrm{a}=\frac{5+10-\mathrm{f}_{\mathrm{f}_{1}}}{5}=\frac{15-5}{5}=2 \mathrm{~m} / \mathrm{s}^{2}
$$

Now let us see how much friction force is required between $2 \mathrm{~kg} \& 3 \mathrm{~kg}$ for common acceleration a

$$
\begin{gathered}
5-\mathrm{f}_{2}=2 \times 2 \\
\mathrm{f}_{2}=1 \\
\mathrm{f}_{2}<\mathrm{f}_{\ell_{2}}
\end{gathered}
$$

It means both block move together.
30. (A)

Output power $=\eta$. Input power

$$
=0.75 \times 400=300 \mathrm{w}
$$

Now $P=\frac{d w}{d t}=\frac{d(m g h)}{d t}$

$$
\begin{aligned}
& \frac{\mathrm{dm}}{\mathrm{dt}}=\frac{\mathrm{P}}{\mathrm{gh}}=\frac{300}{10 \times 40}=\frac{3}{4} \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& =\frac{3}{4} \times 60 \mathrm{~kg} / \mathrm{m}^{-1}=45 \mathrm{~kg} \mathrm{~min}^{-1}
\end{aligned}
$$

Hence, water drawn in $10 \mathrm{~min}=45 \times 10=450 \mathrm{~kg} \mathrm{~min}^{-1}$
Since density of water is $100 \mathrm{~kg} \mathrm{~m}^{-3}$, therefore

$$
\begin{gathered}
m=\rho v \\
v=\frac{450}{1000}=0.45 \mathrm{~m}^{3}
\end{gathered}
$$

CHEMISTRY

31. (B)
$\mathrm{A} \rightarrow \mathrm{B}, \mathrm{V}=$ constant or $\mathrm{P} \alpha \mathrm{T}$, So, $\mathrm{PV} \alpha \mathrm{T}$
$\mathrm{B} \rightarrow \mathrm{C}, \mathrm{T}=$ constant or $\mathrm{PV}=$ constant
$\mathrm{C} \rightarrow \mathrm{A}, \mathrm{V} \alpha \mathrm{T}$, or $\mathrm{P}=\mathrm{constant}$
32. (A)
$\begin{array}{rc}\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons & 2 \mathrm{NH}_{3} \\ \text { Moles } \frac{4}{\mathrm{RT}}-\frac{\mathrm{x}}{\mathrm{RT}} \quad \frac{12}{\mathrm{RT}}-\frac{3 \mathrm{x}}{\mathrm{RT}} & \frac{2 \mathrm{x}}{\mathrm{RT}}\end{array}$
for $\mathrm{NH}_{3}, \mathrm{P} \times 3=\frac{2 \mathrm{x}}{\mathrm{RT}} \times \mathrm{RT}$
or, $3 P=2 x$ or $3 \times 2=2 x$ or $x=3$
So, mole of $\mathrm{H}_{2}=\frac{3}{\mathrm{RT}}$
So, $\mathrm{P} \times 3=\frac{3}{\mathrm{RT}} \times \mathrm{RT}$ or $\mathrm{P}=1 \mathrm{~atm}$
33. (D)

Initially, $\mathrm{n}_{\mathrm{He}}=1, \mathrm{n}_{\mathrm{O}_{2}}=2$

$$
\mathrm{n}_{\mathrm{H}_{2}}=2, \mathrm{n}_{\mathrm{SO}_{2}}=1
$$

After long time, in compartment A
$\mathrm{n}_{\mathrm{He}}=\frac{1}{2} ; \mathrm{n}_{\mathrm{H}_{2}}=1, \mathrm{n}_{\mathrm{O}_{2}}=2$
In compartment B,
$\mathrm{n}_{\mathrm{He}}=\frac{1}{2} ; \mathrm{n}_{\mathrm{H}_{2}}=1, \mathrm{n}_{\mathrm{SO}_{2}}=1$
as, V, T, constant
So, $\mathrm{p} \alpha \mathrm{n}$
So, $\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{3.5}{2.5}=\frac{7}{5}$
34. (C)

At $0^{\circ} \mathrm{C}$ and 2 atm 1 mole of an ideal gas occupy 11.2 litre.
So, n mole gas occupy 11.2 n litre at $0^{\circ} \mathrm{C}$ and 2 atm
i.e. $V_{o}=11.2 n$

Now, $\Delta \mathrm{V}=\frac{\Delta \mathrm{t}}{273.15} \mathrm{~V}_{\mathrm{o}}$
or, $112=\frac{546.3}{273.15} \times 11.2 n \quad$ or, $112=2 \times 11.2 n$
or, $\mathrm{n}=5$
35. (A)
$P_{\mathrm{N}_{2}}+10 \mathrm{~cm}$ of $\mathrm{Hg}+\frac{380.8}{13.6}=76$
or, $\mathrm{P}_{\mathrm{N}_{2}}=38 \mathrm{~cm}$ of $\mathrm{Hg}=\frac{1}{2} \mathrm{~atm}$
Now, $\mathrm{PV}=\mathrm{nRT}$ for N_{2}
$\frac{1}{2} \times 1=n \times \frac{1}{12} \times 360$
or, $\mathrm{n}=\frac{1}{60}$ mole
mass of nitrogen $=\frac{1}{60} \times 28=\frac{14}{30} \mathrm{~g}$
$\%=\frac{14}{30 \times 1.4} \times 100=33.33 \%$
36. (D)

37. (B)

38. (D)

Stability order of various conformers follows Anti > gauche > partially eclipsed > fully eclipsed
(A) - gauche
(B) - fully eclipsed
(C) - partially eclipsed
(D) - Anti
39. (B)

Although the meso compounds containing asymmetric c-atoms (must be similar) but they are optically inactive due to superimposable mirror image or due to the presence of any element of symmetry
40. (A)

0\% anti-aromatic
41. (C)

White vitriol $\rightarrow \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Epsomite $\rightarrow \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
42. (B)

43. (C)

Bond order α Bond energy

	B.O.
$\mathrm{NO}^{+} \longrightarrow$	3.00
$\mathrm{NO} \longrightarrow$	2.5
$\mathrm{NO}^{-} \longrightarrow$	2.00

44. (D)
charge $(q)=\frac{\text { D.M. }}{d}=\frac{1.2 \times 10^{-18} \mathrm{esu}-\mathrm{cm}}{1 \times 10^{-8} \mathrm{~cm}}=1.2 \times 10^{-10} \mathrm{esu}$
\therefore Fraction of charge $=\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}}=0.25$
45. (D)

No in liquid state exist as dimer.
46. (A)
$\because 10 \mathrm{~cm}=1 \mathrm{dm}$
$[\alpha]=\frac{+20^{\circ}}{1 \times 0.4}=+50^{\circ}$
$\because[\alpha]=\frac{\theta}{\ell \times c}$
$\because c=$ concentration of solution (i.e density of solution)
47. (B)
(p)

(q)

(r)

48. (C)
(M)

(N)

(O)

N \& O : Mesomers
M \& N : Diastereomers
M \& O : Diastereomers
49. (C)

When molecule is symmetrical ans has even number of chiral centres then total number of isomers $=2^{n-1}+2^{\frac{n}{2}-1}=2^{4-1}+2^{\frac{4}{2}-1}=2^{3}+2=10$
50. (D)

51. (D)
$V_{c}=3 b$
or, $3=3 \mathrm{~b}$ or $\mathrm{b}=1$ litre $/ \mathrm{mol}$
Now, $\mathrm{b}=4 \times \frac{4}{3} \pi \mathrm{r}^{3} \mathrm{~N}_{\mathrm{A}}$
or, $\quad \sqrt[3]{\frac{1000 \times 3}{16 \pi \mathrm{~N}_{\mathrm{A}}}}=r$
or, $r=\left(\frac{3000}{16 \pi N_{A}}\right)^{1 / 3} \mathrm{~cm}$
52. (C)

For ideal gas $\mathrm{p} \alpha \frac{1}{\mathrm{v}}$ at constant T, n
53. (D)

At same T, K.E. is equal and P.E. of gas > P.E. of liq.
54. (C)

	$\mathrm{A}_{\mathrm{n}}(\mathrm{g})$	\rightleftharpoons
$\mathrm{t}=0$	1 mole	$\mathrm{nA}(\mathrm{g})$
t	$1-\alpha$	O
$\mathrm{p} \alpha \mathrm{a}$		

$\mathrm{p} \alpha \mathrm{n} \quad$ [at constant V, T]
or, or, $\frac{p_{f}}{p_{i}}=\frac{T_{f} n_{f}}{T_{i} n_{i}}$
$\frac{3.5}{2}=\frac{1-\alpha+n \alpha}{1}=1+\alpha(n-1)$
or, $\frac{3.5}{2}-1=\frac{1}{4}(n-1) \quad$ or, $\frac{1.5}{2}=\frac{1}{4}(n-1) \quad$ or, $n=4$
55. (D)

56. (C)

57. (B)
π - bond strength is high when π-bond is formed between small orbitals.
58. (A)
$3 \mathrm{~d} x z$ and 3 dyz orbitals are suitable for π-bonding ($3 \mathrm{~d} \pi-2 \mathrm{p} \pi$)
59. (C)

Isoster : Same number of atom as well as no. of electrons.
60. (D)

MATHEMATICS

61. (B)

$$
\text { in the neighbourhood of } x=\sqrt[3]{\frac{\pi}{2}}
$$

$$
\begin{aligned}
& f(x)=\cos \left(2 \pi+\frac{\pi}{2}[x]-x^{3}\right) \\
& \Rightarrow f(x)=\cos \left(\frac{\pi}{2}-x^{3}\right) \\
& \Rightarrow f(x)=\sin x^{3} \text { in the neighbourhood of } x=\sqrt[3]{\frac{\pi}{2}} \\
& \Rightarrow f^{\prime}(x)=3 x^{2} \cdot \cos x^{3} \\
& \therefore f^{\prime}\left(\sqrt[3]{\frac{\pi}{2}}\right)=3\left(\frac{\pi}{2}\right)^{\frac{2}{3}} \cdot \cos \frac{\pi}{2}=0 \\
& \Rightarrow f^{\prime}\left(\sqrt[3]{\frac{\pi}{2}}\right)=0
\end{aligned}
$$

62. (C)

We have
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{t}-\frac{1}{\mathrm{t}}$ and $\mathrm{x}^{4}+\mathrm{y}^{4}=\mathrm{t}^{2}+\frac{1}{\mathrm{t}^{2}}$
or, $\left(x^{2}+y^{2}\right)^{2}=t^{2}+\frac{1}{t^{2}}-2$
$\Rightarrow\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}=\mathrm{x}^{4}+\mathrm{y}^{4}-2$
$\Rightarrow x^{4}+y^{4}+2 x^{2} y^{2}=x^{4}+y^{4}-2$
$\Rightarrow x^{2} y^{2}=-1$
$\Rightarrow x^{3} y \frac{d y}{d x}=1$
63. (D)

Let $t=x y+y z+z x$,
So $-\frac{1}{2} \leq t \leq 1$
$\therefore \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}$
$=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$=\sqrt{(1+2 t)}(1-t)$
Let $f(t)=(1+2 t)(1-t)^{2}$
$f^{\prime}(t)=6 t(t-1)=0$
Clearly,

$f(\mathrm{t})_{\text {max }}=\mathrm{f}(0)=1$
Hence (D) is correct answer.
64. (B)
$f(x)=8 x^{3}+4 a x^{2}+2 x+a$
$f^{\prime}(x)=24 x^{2}+8 a x+2$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2\left(12 \mathrm{x}^{2}+4 \mathrm{ax}+1\right)$
For $f(x)$ to be non-monotonic, $f^{\prime}(x)=0$ must have distinct roots.
hence,

$$
\mathrm{D}>0
$$

i.e $16 a^{2}-48>0$
$\Rightarrow a^{2}>3$
$\therefore a>\sqrt{3}$ or $a<-\sqrt{3}$
$\therefore a \in 2,3,4, \ldots .$.
\therefore sum $=5050-1=5049$
65. (D)

Consider graph of $f(x)=\frac{x+3}{e^{x}}$

For one solution $\mathrm{k} \in(-\infty, 0] \cup\left\{\mathrm{e}^{2}\right\}$
$\therefore \mathrm{k}=\mathrm{e}^{2}$
66. (C)
$\frac{x^{4}}{(x-1)(x-2)}=x^{2}+3 x+7+\frac{16}{x-2}-\frac{1}{x-1}$
Third derivative $=0+\frac{(-16)(3!)}{(x-2)^{4}}+\frac{3!}{(x-1)^{4}}$
$\therefore-12 \mathrm{k}=-96$
$\mathrm{k}=8$
67. (B)
put $x=y=1$
$3 f(2)=f(1)^{2}$
$\Rightarrow \mathrm{f}(2)=12$
$f(1)=a b=6$
$\Rightarrow \mathrm{ab}=6$
$\Rightarrow \mathrm{f}(2)=\mathrm{ab}^{2}=12$
$\Rightarrow \mathrm{ab}^{2}=4$
From (i) \& (ii)
$a=3, b=2$
$\Rightarrow\left[\frac{3}{2}\right]=1$
68. (D)

The equation of the line joining $A(1,0)$ and $B(3,4)$ is $y=2 x-2$.
This line cuts the circle $x^{2}+y^{2}=4$ at $Q(0,-2)$ and $P\left(\frac{8}{5}, \frac{6}{5}\right)$.
We have $\mathrm{BQ}=3 \sqrt{5}, \mathrm{QA}=\sqrt{5}, \mathrm{BP}=\frac{7}{\sqrt{5}}$ and $\mathrm{PA}=\frac{3}{\sqrt{5}}$.
Therefore, $\quad \alpha=\frac{\mathrm{BP}}{\mathrm{PA}}=\frac{\frac{7}{\sqrt{5}}}{\frac{3}{\sqrt{5}}}=\frac{7}{3}$
and $\beta=\frac{\mathrm{BQ}}{\mathrm{QA}}=\frac{3 \sqrt{5}}{\sqrt{5}}=3$

$\because \alpha$ and β are the roots of the equation.
So, $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow \mathrm{x}^{2}-\mathrm{x}\left(\frac{7}{3}+3\right)+\frac{7}{3}(3)=0$
$\Rightarrow 3 x^{2}-16 x+21=0$
69. (C)

The radical axis bisects the common tangent BD. Hence, M is the Mid-point of BD.
Let $C \equiv(a, b)$
Now, $C(a, b)$ lies on common chord AE which is
$y-2=-1(x-1)$
or, $x+y=3$
$\therefore a+b=3$
Also $M \equiv\left(\frac{a+1}{2}, \frac{b+2}{2}\right)$ lies on $4 x-2 y=9$
$\therefore 4\left(\frac{a+1}{2}\right)-2\left(\frac{b+2}{2}\right)=9$
$\Rightarrow 2 \mathrm{a}+2-\mathrm{b}-2=9$

$$
\begin{equation*}
\Rightarrow 2 \mathrm{a}-\mathrm{b}=9 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii) we get
$a=4, b=-1$
70. (C)
$x^{2}+y^{2}-6 x-10 y+\lambda=0$
$S:(x-3)^{2}+(y-5)^{2}=(\sqrt{34-\lambda})^{2}$
since point $P(1,4)$ lies inside the circle

$$
S_{1}<0
$$

$\Rightarrow 1+16-6-40+\lambda<0$
$\Rightarrow \lambda<29$
Also, circle neither touches nor cuts the axes, then
$3>\sqrt{34-\lambda}$ or $\lambda>25$
and $5>\sqrt{34-\lambda}$ or $\lambda>9$
From (i), (ii) and (iii)
$25<\lambda<29$
Hence Difference $=29-25=4$
71. (D)

The Area of triangle $A B C$ is maximum if $C D$ is maximum because $A B$ is fixed.
It is clear that tangent drawn to the parabola at C should be parallel to $A B$.
For $y^{2}=4 x$
$\therefore 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4 \quad$ or, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{y}}$
$\Rightarrow \frac{2}{\beta}=\frac{6+4}{9-4}=2 \quad$ or, $\beta=1$
then $\alpha=\frac{1}{4}$
\therefore coordinates of C are $\left(\frac{1}{4}, 1\right)$
$\therefore 4 \alpha+\beta+3=1+1+3=5$
72. (A)

$$
\begin{aligned}
& \frac{\pi}{3}<\theta<\pi \\
& \Rightarrow \frac{\pi}{6}<\frac{\theta}{2}<\frac{\pi}{2} \\
& \Rightarrow \frac{1}{2}<\frac{1}{a}<1 \\
& \Rightarrow 1<a<2 \\
& \therefore a \in(-2,-1) \cup(1,2)
\end{aligned}
$$

73. (B)

Given lines $(x+2)(y+2)=0$ and $x+y+2=0$ form a right angle triangle with right angle at $(-2,-2)$ with other vertices as $(-2,0)$ and $(0,-2)$.

74. (A)

Given $f(x)=x\left(x^{2}-3 x+2\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-2)(\mathrm{x}-1)$
Graph of $y=f(x)$ is shown as
Now for exactly one positive and one Negative solution of the equation $f(x)=K$ we should have

$$
\begin{aligned}
& K=f\left(1+\frac{1}{\sqrt{3}}\right) \\
\therefore & K=\left(1+\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}-1\right)\left(\frac{1}{\sqrt{3}}\right) \\
& \left(\frac{1}{3}-1\right)\left(\frac{1}{\sqrt{3}}\right)=\frac{-2}{3 \sqrt{3}}=-\frac{2 \sqrt{3}}{9}
\end{aligned}
$$

75. (D)
$y_{1}=\frac{1}{x}$
$y_{2}=-\frac{1}{x^{2}}$
$y_{3}=\frac{2}{x^{3}}$
$y_{n}=\frac{(-)^{n-1}(n-1)!}{x^{n}}$
76. (D)

Given, two circles are
$S_{1}: x^{2}+y^{2}-16=0$
$\mathrm{C}_{1}(0,0), \mathrm{r}_{1}=4$
and $S_{2}: x^{2}+y^{2}+6 x+8 y+n^{2}=0$
$C_{2}:(-3,-4) ; r_{2}=\sqrt{9+16-n^{2}}$

$$
\begin{equation*}
r_{2}=\sqrt{25-n^{2}} \tag{i}
\end{equation*}
$$

Here, $25-\mathrm{n}^{2}>0 \Rightarrow-5<\mathrm{n}<5$

For exactly two common tangents
$r_{1}+r_{2}>c_{1} c_{2}>\left|r_{1}-r_{2}\right|$
$\Rightarrow 4+\sqrt{25-\mathrm{n}^{2}}>5>\left|4-\sqrt{25-\mathrm{n}^{2}}\right| \quad \Rightarrow \sqrt{25-\mathrm{n}^{2}}>1$
$\Rightarrow 25-\mathrm{n}^{2}>1$
$\Rightarrow \mathrm{n}^{2}<24 \Rightarrow-\sqrt{24}<\mathrm{n}<\sqrt{24}$
But $\mathrm{n} \in \mathrm{I}$, So
$n=-4,-3,-2,-1,0,1,2,3,4$.
Hence possible values of n is 9
77. (A)

Let coordinates of B be $\left(\frac{t^{2}}{2}, t\right)$

Now area of $\triangle A O B=\frac{1}{2}| | \begin{array}{ccc}0 & 0 & 1 \\ 2 & -2 & 1 \\ \frac{t^{2}}{2} & t & 1\end{array}| |=\frac{3}{2}$
$\Rightarrow\left(2 \mathrm{t}+\mathrm{t}^{2}\right)= \pm 3$
$\therefore \mathrm{t}=1,-3$
$\therefore\left(\frac{1}{2}, 1\right)$ and $\left(\frac{9}{2},-3\right)$
78. (D)

Normal at point t_{1} cuts the parabola again at t_{2}. Then
$\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}} \Rightarrow \mathrm{t}_{1}^{2}+\mathrm{t}_{1} \mathrm{t}_{2}+2=0$
Since t is real, So
$\mathrm{t}_{2}^{2}-4 \times 1 \times 2 \geq 0$
$\mathrm{t}_{2}^{2} \geq 8$
minimum value of $t_{2}^{2}=8$
79. (A)

Given circles are
$S_{1}: x^{2}+y^{2}-12=0$
and $S_{2}: x^{2}+y^{2}-5 x+3 y-6=0$
Now, equation of common chord of circle (i) and (ii) is
$S_{1}-S_{2}=0$
$\Rightarrow 5 \mathrm{x}-3 \mathrm{y}-6=0$
Let tangents to circle at A and B meet at $P(\alpha, \beta)$ then $A B$ will be chord of contact of the tangents to the circle from P. Therefore equation of $A B$ will be
$x \alpha+y \beta-12=0$
Now, lines (iii) and (iv) are same, so
$\frac{\alpha}{5}=\frac{\beta}{-3}=\frac{-12}{-6}$
$\Rightarrow \alpha=10$
$\beta=-6$
$\therefore \quad P \equiv(10,-6)$
80. (B)
$\mathrm{f}(\mathrm{x})=\sqrt{1+\sin ^{2}\left(\mathrm{x}^{2}\right)}$
$f^{\prime}(x)=\frac{1}{2 \sqrt{1+\sin ^{2}\left(x^{2}\right)}}\left(\sin \left(2 x^{2}\right)(2 x)\right)$
$\Rightarrow f^{\prime}(x)=\frac{x \sin \left(2 x^{2}\right)}{\sqrt{1+\sin ^{2}\left(x^{2}\right)}} \quad \Rightarrow f^{\prime}\left(\frac{\sqrt{\pi}}{2}\right)=\frac{\frac{\sqrt{\pi}}{2}}{\sqrt{1+\frac{1}{2}}}=\sqrt{\frac{\pi}{6}}$
81. (A)

The required circle will be $x(x+5)+y(y+5)=0$
82. (C)

Given,

$$
\lim _{x \rightarrow 0}\left(\frac{p(x)}{x^{5}}-2\right)=5
$$

$\therefore \lim _{x \rightarrow 0} \frac{p(x)}{x^{5}}=7$
Consider $\mathrm{p}(\mathrm{x})=\mathrm{ax} \mathrm{x}^{7}+\mathrm{bx}{ }^{6}+7 \mathrm{x}^{5}$
$\therefore \mathrm{p}^{\prime}(\mathrm{x})=7 \mathrm{ax}^{6}+6 \mathrm{bx}{ }^{5}+35 \mathrm{x}^{4}$
Now, $p^{\prime}(-1)=0$
$\Rightarrow 7 \mathrm{a}-6 \mathrm{~b}+35=0$
and $p^{\prime}(1)=0$
$\Rightarrow 7 \mathrm{a}+6 \mathrm{~b}+35=0$
From (i) and (ii)
$14 a+70=0$
$a=-5$ and $b=0$
$\therefore \mathrm{p}(\mathrm{x})=-5 \mathrm{x}^{7}+7 \mathrm{x}^{5} \quad \therefore \mathrm{p}(1)=-5+7=2$
83. (C)

Let $Q\left(t_{1}^{2}, 2 t_{1}\right)$
$\Rightarrow \mathrm{R}\left(\mathrm{t}_{1}^{2},-2 \mathrm{t}_{1}\right)$
clearly, $\angle \mathrm{QOP}=\frac{\pi}{6}$
$\tan \frac{\pi}{6}=\frac{2}{\mathrm{t}_{1}}$
$\therefore \frac{2}{\mathrm{t}_{1}}=\frac{1}{\sqrt{3}}$

or, $t_{1}=2 \sqrt{3}$
The equation of normal at Q is
$y=-t_{1} x+2 t_{1}+t_{1}^{3}$
\because It passes through $\mathrm{P}(\alpha, 0)$, So
$\Rightarrow 0=-t_{1} \alpha+2 t_{1}+t_{1}^{3}$
$\Rightarrow \alpha=2+t_{1}^{2}$
$\Rightarrow \alpha=2+12=14$
84. (C)

Given equation of parabola
$y^{2}=16 x$, here $a=4$
Since, two tangents passes through the points $(-4,-\alpha)$ which lies on the directrix $x=-4$
Then tangents are perpendicular

$$
\text { i.e } m_{1} \cdot m_{2}=-1
$$

85. (A)
$f(x)=\cos x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos 8 x \cdot \cos 16 x$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{32} \frac{\sin 32 \mathrm{x}}{\sin \mathrm{x}}$
$f^{\prime}(x)=\frac{1}{32}\left[\frac{32 \sin x \cdot \cos 32 x-\sin 32 x \cdot \cos x}{\sin ^{2} x}\right] \quad \Rightarrow f^{\prime}\left(\frac{\pi}{4}\right)=\frac{\frac{1}{32}\left[32 \times \frac{1}{\sqrt{2}} \times 1-0\right]}{\frac{1}{2}}$ $f^{\prime}\left(\frac{\pi}{4}\right)=\sqrt{2}$
86. (A)

We know that normals at $\left(\mathrm{at}_{1}^{2}, 2 a \mathrm{t}_{1}\right)$ and $\left(\mathrm{at}_{2}^{2}, 2 a t_{2}\right)$ meet again on the parabola.
Then $t_{1} t_{2}=2$
Here, $\mathrm{a}=2$
Given 2 at $_{1}+2 a t_{2}=8$
$\Rightarrow 4\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=8$
$t_{1}+t_{2}=2$
So, $\alpha+\gamma=$ at $_{1}^{2}+$ at $_{2}^{2}$

$$
\begin{aligned}
= & a\left(t_{1}^{2}+t_{2}^{2}\right) \\
& =2\left[\left(t_{1}+t_{2}\right)^{2}-2 t_{1} t_{2}\right] \\
& =2[4-2 \times 2] \\
\alpha+\gamma & =0
\end{aligned}
$$

87. (B)

From Geometry, we have

$$
\begin{align*}
& \frac{r}{45 \tan 45^{\circ}}=\frac{45-h}{45} \\
& \Rightarrow h=45-r \tag{i}
\end{align*}
$$

Now, volume of cylinder
$v=\pi r^{2} h \quad=\pi r^{2}(45-r)$
Now, $\frac{d v}{d r}=0$

$\Rightarrow \pi\left(90 \mathrm{r}-3 \mathrm{r}^{2}\right)=0 \quad \Rightarrow \mathrm{r}=30$
$\therefore \mathrm{V}_{\text {max }}=\pi(30)^{2}(15)$

$$
=\pi(900)(15)
$$

$$
=13500 \pi \mathrm{~cm}^{3}
$$

88. (A)

Let $f(x)=a x^{2}+b x+c$
Then $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{ax}+\mathrm{b}$
Also, $f(1)=f(-1)$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}-\mathrm{b}+\mathrm{c} \Rightarrow \mathrm{b}=0$
$f^{\prime}(x)=2 a x$
$\therefore \mathrm{f}^{\prime}\left(\mathrm{a}_{1}\right)=2 \mathrm{aa}_{1}$
$f^{\prime}\left(\mathrm{a}_{2}\right)=2 \mathrm{aa}_{2}$
$f^{\prime}\left(a_{3}\right)=2 \mathrm{aa}_{3}$
As a_{1}, a_{2}, a_{3} are in A.P.
$\therefore f^{\prime}\left(a_{1}\right), f^{\prime}\left(a_{2}\right), f\left(a_{3}\right)$ are in A.P.
89. (B)

Let $x=\cos \theta$
Then $y=\operatorname{cosec}^{-1}\left(\frac{1}{2 x^{2}-1}\right)=\operatorname{cosec}^{-1}(\sec 2 \theta)=\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{\pi}{2}-2 \theta\right)\right)$

$$
y=\frac{\pi}{2}-2 \theta
$$

Also, $z=\sqrt{1-\cos ^{2} \theta}=\sin \theta$
$\therefore \frac{d y}{d z}=\frac{\frac{d y}{d \theta}}{\frac{d z}{d \theta}}=\frac{-2}{\cos \theta}=\frac{-2}{x}$
$\left.\therefore \frac{\mathrm{dy}}{\mathrm{dz}}\right|_{\mathrm{x}=\frac{1}{2}}=-4$
90. (B)

Let $f(x)=x+a x^{-1}-3$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=1-\mathrm{ax}^{-2}=0$
$\Rightarrow 1=\frac{\mathrm{a}}{\mathrm{x}^{2}} \Rightarrow \mathrm{x}^{2}=\mathrm{a}$
$\therefore \mathrm{x}=(\mathrm{a})^{\frac{1}{2}}$
Also, $f^{\prime \prime}(x)=2 \mathrm{ax}^{-3}$ or, $\mathrm{f} \prime\left(\mathrm{a}^{\frac{1}{2}}\right)>0$
Thus $\mathrm{x}=\mathrm{a}^{\frac{1}{2}}$ is the point of minima.
For $\mathrm{x}+\mathrm{ax}^{-1}-3>0 \forall \mathrm{x} \in(0, \infty)$
we must have
$f\left(a^{\frac{1}{2}}\right)>0$
or, $a^{\frac{1}{2}}+a \cdot a^{-\frac{1}{2}}-3>0$
$\Rightarrow 2 a^{\frac{1}{2}}>3 \quad \Rightarrow a^{\frac{1}{2}}>\frac{3}{2}$
$\Rightarrow \mathrm{a}>\frac{9}{4}$
\therefore least value of a is 3 .

JEE ADVANCED

1. (A)

$$
\mathrm{s}=\mathrm{L} \sin \theta \sqrt{1+\mu^{2}}=0.3 \mathrm{~cm}
$$

Friction is not sufficient to prevent slipping between the block and the bar \& normal reaction between the bar \& the block is a constant, therefore a constant total contact force (resultant of the normal reaction from the bar \& kinetic friction) acts on the block by the bar. In addition, starting from rest, the block moves in a straight line.
2. (A)
$\frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{K}\left(4 \pi \mathrm{r}^{2}\right)$, where K is a constant and r is the radius of the drop at any instant.
But $\mathrm{m}=\frac{4}{3} \pi r^{3} \rho=\frac{4}{3} \pi r^{3}$, since $\rho=$ density of water $=1 \mathrm{gm} / \mathrm{cc}$.
$\frac{\mathrm{dm}}{\mathrm{dt}}=\frac{4}{3} \pi\left(3 \mathrm{r}^{2}\right) \frac{\mathrm{dr}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{K} 4 \pi \mathrm{r}^{2}$
$\because \mathrm{K}=\frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \mathrm{r}=\mathrm{Kt}$ (since it starts with zero radius)
Since, $m \frac{d v}{d t}+v \frac{d m}{d t}=m g$
$\Rightarrow \frac{4}{3} \pi r^{3} \frac{d v}{d t}+v K 4 \pi r^{2}=\frac{4}{3} \pi r^{3} g$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}+\mathrm{vk} \frac{3}{\mathrm{r}}=\mathrm{g} ;$ But $\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{a} \& \mathrm{v}=\mathrm{at}$
$\Rightarrow \mathrm{a}+\operatorname{atK}\left(\frac{3}{\mathrm{Kt}}\right)=\mathrm{g}$
$\Rightarrow 4 \mathrm{a}=\mathrm{g}$
$\therefore \mathrm{a}=\left(\frac{\mathrm{g}}{4}\right)$
3. (A)

Force $=m a=m \frac{d v}{d t}=(P-K t) g$
$\Rightarrow \mathrm{mv}=\int(\mathrm{P}-\mathrm{Kt}) \mathrm{gdt}=\left(\mathrm{Pt}-\frac{\mathrm{Kt}^{2}}{2}\right) \mathrm{g}$
Maximum velocity is attained when $\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{Pt}-\frac{\mathrm{Kt}^{2}}{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow(P-K t)=0 \\
& \Rightarrow t=T=\frac{P}{K} \text { But } v=\frac{d s}{d t} \\
& \Rightarrow m \frac{d s}{d t}=\left(P t-\frac{\mathrm{Kt}^{2}}{2}\right) \\
& \Rightarrow \mathrm{ms}=\left(\frac{\mathrm{Pt}^{2}}{2}-\frac{\mathrm{Kt}^{3}}{6}\right) \mathrm{g} \\
& \Rightarrow \mathrm{~s}=\frac{1}{\mathrm{~m}}\left(\frac{\mathrm{P}}{2} \frac{\mathrm{P}^{2}}{\mathrm{~K}^{2}}-\frac{\mathrm{K}}{6} \frac{\mathrm{P}^{3}}{\mathrm{~K}^{3}}\right) \mathrm{g} \\
& \because \mathrm{~s}=\frac{\mathrm{gKT}}{3 \mathrm{~m}}
\end{aligned}
$$

4. (B)

Path difference $\Delta x=\left\{\left(S_{2} P-t_{2}\right)+\mu_{2} t_{2}\right\}-\left\{\left(S_{1} P-t_{1}\right)+\mu_{1} t_{1}\right\}$

$$
=S_{2} P-S_{1} P+\left(\mu_{2}-1\right) t_{2}-\left(\mu_{1}-1\right) t_{1}
$$

For $n^{\text {th }}$ order maxima $n \lambda=\left\{\left(\mu_{2}-1\right) t_{2}-\left(\mu_{1}-1\right) t_{1}\right\}+\frac{d y}{D}$
For zero order maxima $y_{0}=\frac{D}{d}\left\{\left(\mu_{2}-1\right) t_{2}-\left(\mu_{1}-1\right) t_{1}\right\}$
(a) When both sheets have same average thickness $\frac{t_{1}+t_{2}}{2}$ and R.I. μ_{1} and μ_{2}

$$
y_{1}=\frac{D}{d}\left\{\left(\mu_{2}-\mu_{1}\right) \frac{t_{1}+t_{2}}{2}\right\}
$$

$$
\begin{align*}
& \Rightarrow \quad \frac{5 \times 10^{-3} \times 1 \times 10^{-3}}{1}=(1.6-1.4) \frac{t_{1}+t_{2}}{2} \\
& \therefore \quad t_{1}+t_{2}=5 \times 10^{-5} \tag{i}
\end{align*}
$$

(b) When both sheets have same R.I. $=\frac{\mu_{1}+\mu_{2}}{2}$ and thickness t_{1} and t_{2}

$$
\begin{align*}
& y_{2}=\frac{D}{d}\left\{\frac{\mu_{2}+\mu_{1}}{2}-1\right\}\left(t_{1}-t_{2}\right) \\
\Rightarrow & \frac{8 \times 10^{-3} \times 1 \times 10^{-3}}{1(1.5-1)}=t_{1}-t_{2} \\
\Rightarrow & t_{1}-t_{2}=1.6 \times 10^{-5} \tag{ii}
\end{align*}
$$

From (i) and (ii)

$$
2 t_{1}=6.6 \times 10^{-5}
$$

$$
\Rightarrow t_{1}=3.3 \times 10^{-5} \mathrm{~m} \text { and } \quad t_{2}=1.7 \times 10^{-5} \mathrm{~m}
$$

5. (D)

For sphere ' A ': $m g=2 k x-\mu R_{A}$

For block :

$$
\mathrm{mg}=\mu\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}}\right)
$$

But $R_{A}=R_{C} \Rightarrow R_{A}=\frac{m g}{2 \mu}$

$$
\Rightarrow \mathrm{R}_{\mathrm{A}}=\frac{2 \mathrm{kx}-\mu \mathrm{R}_{\mathrm{A}}}{2 \mu}
$$

$$
\Rightarrow R_{A}=\frac{k x}{\mu}-\frac{R_{A}}{2}
$$

$\because \mathrm{R}_{\mathrm{A}}=\frac{2 \mathrm{Kx}}{3 \mu}$
6. (A)

The detector receives direct as well as reflected waves. Distance moved between two consecutive positions of maxima $=\frac{\lambda}{2}$

For fourteen successive maxima $=14 \times \frac{\lambda}{2}$
This is given to be 0.14 m
$\therefore \lambda=2 \times 10^{-2} \mathrm{~m}$
$v=\frac{C}{\lambda}=\frac{3 \times 10^{8}}{2 \times 10^{-2}}$
$=1.5 \times 10^{10} \mathrm{~Hz}$
7. (B)
$\beta_{\text {red }}=\frac{\lambda D}{d}=\frac{675 \times 10^{-9} \times 2}{1.5 \times 10^{-3}}$
$=0.9 \mathrm{~mm}$
$\beta_{\text {violet }}=\frac{450 \times 10^{-9} \times 2}{1.5 \times 10^{-3}}=0.6 \mathrm{~mm}$
Let m th order red bright fringe coincide with $(m+n)$ th violet bright fringe
$m \times 0.9=(m+n) 0.6$
$\frac{m+n}{m}=\frac{0.9}{0.6}=1.5$
$m=2 n$
When $\mathrm{n}=1$
$m=2$
\therefore minimum distance $=2 \times 0.9$
$=1.8 \mathrm{~mm}$
8. (B)

Let P be power of the engine.
At maximum speed there is no acceleration.
$\frac{P}{40}=500$
$\mathrm{P}=2 \times 10^{4} \mathrm{~W}$
On the incline, let the maximum speed be v.
At maximum speed there is no acceleration

$\frac{P}{V}=500+1500 \mathrm{~g} \sin \theta=500+1500 \times 9.8 \times \frac{1}{49}=800$
$v=\frac{2 \times 10^{4}}{800}=25 \mathrm{~m} / \mathrm{s}$
9. (A)

Path difference at point $\mathrm{O}=\mathrm{t}\left(\mu_{2}-\mu_{1}\right)=\frac{10}{6} \mu \mathrm{~m}$
\therefore Phase difference $\Delta \phi=\frac{2 \pi}{\lambda} \Delta x \approx \pi$
Hence intensity will be minimum i.e. dark.
10. (C)

For point O to become dark
$\mathrm{t}\left(\mu_{2} \sim \mu_{1}\right)=(2 \mathrm{n}+1) \frac{\lambda}{2}$
$t=\frac{(2 n+1) \lambda}{2\left(\mu_{2} \sim \mu_{1}\right)}$
$\Rightarrow t_{\text {min }}=\frac{\lambda}{2\left(\mu_{2} \sim \mu_{1}\right)}=9.9 \mu \mathrm{~m}$
11. (C)

Resistive force given by the cable system $F=\left(9 \times 10^{5} t-4.5 \times 10^{5} t^{2}\right) \mathrm{N}$
For $F_{\max }, \frac{d F}{d t}=0, \frac{d^{2} F}{d t^{2}}=-v e$

$$
\begin{aligned}
\frac{\mathrm{dF}}{\mathrm{dt}} & =0, \text { for } \mathrm{t}=1 \mathrm{~s} \\
\therefore \mathrm{~F}_{\max } & =4.5 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

Total resistive force by the brakes and cable system

$$
\begin{aligned}
R_{\max } & =600 \mathrm{kN}+4.5 \times 10^{5} \mathrm{~N} \\
& =10.5 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

Maximum acceleration experienced by the pilot $=\frac{10.5 \times 10^{5}}{1.5 \times 10^{4}}=70 \mathrm{~m} / \mathrm{s}^{2}$
12. (C)

At any instant, the force opposing the motion, $F_{\text {rest }}=+m \frac{d v}{d t}$

$$
\int_{120}^{0} d v=-\int_{0}^{t} \frac{\left(9 \times 10^{5} t-4.5 \times 10^{5} t^{2}+6 \times 10^{5}\right)}{1.5 \times 10^{4}} d t
$$

$$
10 t^{3}-30 t^{2}-40 t+120=0
$$

$$
10 t^{2}(t-3)-40(t-3)=0
$$

$\Rightarrow \mathrm{t}= \pm 2 \mathrm{sor}+3 \mathrm{~s}$ (-ve sign is not possible)
The plane stops at $\mathrm{t}=2 \mathrm{~s}$
13. (C)
$\frac{1}{2} \mathrm{kx}^{2}=\mathrm{mgh}=\mathrm{h} \propto \mathrm{x}^{2}$
$\therefore \frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}=\frac{\mathrm{x}_{2}^{2}}{\mathrm{x}_{1}^{2}}$
$h_{1}=\left(\frac{11}{10}\right)^{2} 3 m=3.63 m$
14. (D)
$\frac{1}{2} \mathrm{kx}^{2}=\mathrm{mgh} \Rightarrow \mathrm{h}=\frac{\mathrm{kx}^{2}}{2 \mathrm{mg}} \Rightarrow \mathrm{h} \propto \frac{1}{\mathrm{~m}}$
$\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{\mathrm{m}}{\mathrm{m}+\frac{\mathrm{m}}{10}}=\frac{10}{11}$
$\therefore h_{2}=\frac{10}{11} \times 3.3=3 \mathrm{~m}$
15. (C, D)
$(y-h)+\sqrt{x^{2}+h^{2}}=\ell$
$\frac{d y}{d t}+\frac{x}{\sqrt{x^{2}+h^{2}}} \frac{d x}{d t}=0$
$\frac{d y}{d t}=-\frac{x}{\sqrt{x^{2}+h^{2}}} \frac{d x}{d t}$
$\frac{d y}{d t}=-\frac{3}{5} v_{A}$
$\left|v_{B}\right|=\frac{3}{5} v_{A}$
$\frac{d^{2} y}{d t^{2}}=v_{A} \frac{h^{2}}{\left(x^{2}+h^{2}\right)^{3 / 2}}$

$a_{B}=v_{A} \frac{16}{(5)^{3}}$
$a_{B}=\frac{16}{125} v_{A}$
16. (A, B, C, D)
$F=-\frac{d U}{d x}=-5(2 x-4)$
At mean position $F=0 \Rightarrow x=2 m$
$U_{\text {min }}=-20 \mathrm{~J}$
$a=-50 \times 2(x-2)$
$\omega=10 \mathrm{rad} / \mathrm{sec}$
$\mathrm{T}=\pi / 5 \mathrm{sec}$
17. (B, D)

There is a dark fringe at O if the path difference $\delta=\mathrm{ABO}-\mathrm{AO}^{\prime} \mathrm{O}=\frac{\lambda}{2}$
$=2 \sqrt{D^{2}+d^{2}}-2 D=\frac{2 d^{2}}{2 D}=\frac{d^{2}}{D}=\frac{\lambda}{2} \quad \Rightarrow d_{\text {min }}=\sqrt{\frac{\lambda D}{2}}$

The bright fringe is formed at P if the path difference

$$
\begin{aligned}
\delta^{\prime}= & A O ' P-A B P=\lambda \\
& =D+\sqrt{D^{2}+x^{2}}-\sqrt{D^{2}+d^{2}}-\sqrt{D^{2}+(x-d)^{2}}=\lambda \\
& =\frac{x^{2}}{2 D}-\frac{d^{2}}{2 D}-\frac{\left(x^{2}+d^{2}-2 x d\right)}{2 D}=\lambda
\end{aligned}
$$

Given $d=d_{\text {min }}$
Solving $x=d_{\text {min }}=\sqrt{\frac{\lambda D}{2}}$

18. (A, D)

The centre-to-centre distance between the two slits, d, determines the width of the fringes. If this distance is kept the same while widening the adjustable slit, the fringe width will remain the same.
Intensity is the light energy per unit area. If this intensity is kept the same at I_{0} when the wavelength is changed, the location of maxima will be changed but the maximum intensity in the fringes will be the same.
Since some light energy is absorbed by the plate, only 80% of the light energy is transmitted to form interference fringes. Hence the intensity at the maxima will be reduced.
19. (A, D)

All brick are in identical condition. So, when normal contact force is slightly less than 50 N , all bricks fall simultaneously.
Here,

$$
2 \mu \mathrm{~F}=\mathrm{nmg}
$$

Or $\mathrm{n}=\frac{2 \mu \mathrm{~F}}{\mathrm{mg}}=\frac{2 \times 0.5 \times 50}{10}=5$
And contact force, $\mathrm{F}_{\mathrm{C}}=\sqrt{\mathrm{F}^{2}+(\mu \mathrm{F})^{2}}$

$$
=\sqrt{(50)^{2}+(0.5 \times 50)^{2}}=55.9 \mathrm{~N}
$$

20. (A,B,C,D)

Maximum loss in $\mathrm{PE}=\mathrm{mgh}=\frac{1}{2} \mathrm{mv}_{\text {max }}^{2}$
or, $\mathrm{v}_{\text {max }}=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 10}$

$$
=10 \sqrt{2} \mathrm{~m} / \mathrm{s}
$$

For reaching at point B, minimum mechanical energy required is $\mathrm{mg} \times 11>$ initial mechanical energy. That is why, block never reach at the point B and repeats its path continuously.
21. (D)

Possible enol of X :

22. (B)

Polarity of bond α critical temp.
23. (B)

Bond length $\alpha \frac{1}{\text { Bond order }}$
$\left\{\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}\right\}$
24. (C)

Initially $P_{\mathrm{He}}+\mathrm{P}_{\mathrm{Ne}}=950-50=900$ torr
$P_{\text {He }}=\frac{2}{3} \times 900=600$ torr ; $\quad P_{\mathrm{Ne}}=\frac{1}{3} \times 900=300$ torr
In final condition, $\mathrm{P}_{\mathrm{He}}=1800$ torr
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}(\mathrm{g})=100$ torr
$\frac{\mathrm{n}_{\mathrm{He}}(\mathrm{g})}{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}(\mathrm{g})}=\frac{1800}{100}=\frac{18}{1}[\mathrm{n} \alpha \mathrm{p}$ at constant V and $T]$
25. (C)

26. (B)

Let volume of balloon is V litre
$P V=n R T$
$3 \mathrm{~V}=\frac{\mathrm{n} \times 0.0821 \times 36}{0.0821}$
or, $\mathrm{n}=\frac{\mathrm{V}}{12}$ mole He
mass of $\mathrm{He}=\frac{\mathrm{V}}{12} \times \frac{4}{1000} \mathrm{~kg}=\frac{\mathrm{V}}{3000} \mathrm{~kg}$
Now, $\frac{V}{3000}+50+450=\frac{V}{1000}$
or, $V=250 \times 3000$ litre $=250 \times 3 \mathrm{~m}^{3}=750 \mathrm{~m}^{3}$
27. (C)
(I)

(II)

(III)

I \& II : enantiomers
I \& III: diastreomers
II \& III : diastreomers
28. (B)

When only attraction force works
$U(r)=\frac{K Q, Q_{2}}{r}$, rectangular hyperbola
29. (C)
$D B E=\frac{\sum n(v-2)}{2}+1$
DBE of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}=\frac{5(4-2)+10(1-2)}{2}+1$
$=\frac{10-10}{2}+1$
$=0+1$
$=1$
It means open chain structural isomers with one π-bond in each or a ring without π-bond.

2-Methylbutanal
(DBE = 1)

Pentanal
(DBE = 1)

2-Ethoxypropane
(DBE = 0)
30. (D)

If degree of unsaturation $=3$ then structural isomers may content-
(i) Three π-bonds without ring
(ii) Three rings without π-bonds
(iii) Two rings with one π-bond
(iv) Two π-bonds with one ring
31. (C)

For ideal gas, $P_{\text {ideal }}=\frac{\mathrm{Mu}_{\text {rms }}^{2}}{3 \mathrm{~V}}$
For 1 mole real gas $P_{\text {real }}+\frac{a}{V^{2}}=P_{\text {ideal }}$
So, $P_{\text {real }}+\frac{a}{V^{2}}=\frac{M u_{\text {rss }}^{2}}{3 V}$

32. (A)

Average kinetic energy energy depends only on temperature.
33. (A)
$\mathrm{R}_{3} \mathrm{~N}-\mathrm{O}$ has higher D.M as compared to $\mathrm{R}_{3} \mathrm{P}-\mathrm{O}$ due to back bonding from $\underline{\mathrm{O}}$ atom to $\underline{\mathrm{P}}$ atom.
34. (D)
$\mathrm{NCl}_{3}>\mathrm{NH}_{3}>\mathrm{NF}_{3}$ (Bond angle)
35. (A,B,C,D)
$\eta \alpha \rho \overline{\mathrm{u}} \lambda_{\text {mean }}$ or $\eta \alpha \frac{\mathrm{PM}}{\mathrm{RT}} \sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}} \frac{1}{\sqrt{2} \pi \sigma^{2} \mathrm{~N}^{*}}$
or, $\eta \alpha \frac{\mathrm{PM}}{\mathrm{RT}} \sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}} \frac{\mathrm{KT}}{\sqrt{2} \pi \sigma^{2} \mathrm{P}} \quad$ or, $\eta \alpha \frac{\sqrt{\mathrm{MT}}}{\sigma^{2}} ; \mathrm{P} \alpha \mathrm{T}$ at const. V
36. (B, D)

Factual
37. (A,C,D)

(B)

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7
(C)
 Total stereogenic unit $=6$
(D)

38. (B,C)
(I)

(II)

(III)

I, II-Enantiomers, II, III-Diastereomers
39. (A,B)
$\mathbf{I}_{3}{ }^{-}$is linear so bond angle is 80°
40. (A,B,D)

When mixture is passed through hot graphite the following reaction will occur.
$\mathrm{CO}_{2}+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
$x \mathrm{ml} \quad 2 \mathrm{xml}$ will formed
\therefore Total volume of mixture $=160$

$$
\begin{aligned}
& 100-x+2 x=160 \\
& x=60 \mathrm{ml}
\end{aligned}
$$

Volume of CO $=100-x=40 \mathrm{ml}$

MATHEMATICS

41. (B)

Let incidient rays be PA \& QB After reflection, both rays passes through the focus $(1,0)$ there fore, $A B$ is focal chord Let A be $\left(t^{2}, 2 t\right)$ then B be $\left(\frac{1}{t^{2}}, \frac{-2}{t}\right)$
given $2 \mathrm{t}=3$
$\therefore \quad \mathrm{t}=\frac{3}{2}$
Hence distance of B rom Axis is $\left|\frac{-2}{t}\right|=\frac{4}{3}$
42. (B)

Given, $x+y-\ln (x+y)=2 x+5$
differentiate:-

$$
\begin{aligned}
& 1+\frac{d y}{d x}-\frac{1}{x+y}\left(1+\frac{d y}{d x}\right)=2 \\
& \frac{d y}{d x}=\frac{x+y+1}{x+y-1} \\
& \left(\frac{d y}{d x}\right)_{\alpha, \beta}=\frac{\alpha+\beta+1}{\alpha+\beta-1}=\infty \\
& \alpha+\beta=1
\end{aligned}
$$

43. (B)

$$
\begin{aligned}
& \frac{a+2 c}{b+3 d}=\frac{-4}{3} \\
\Rightarrow & 3 a+4 b+6 c+12 d=0
\end{aligned}
$$

$\Rightarrow \frac{a}{4}+\frac{b}{3}+\frac{c}{2}+d=0$
Now, $f(x)=\frac{a x^{4}}{4}+\frac{b x^{3}}{3}+\frac{c x^{2}}{2}+d x+k$
then $f(0)=0=f(1)$
$\therefore f(x)$ satisfy the condition of Rolle's theorem in $[0,1]$
Hence $f^{\prime}(x)=0$ has at least one root in $(0,1)$
44. (D)

$$
\begin{aligned}
& g(x)=f\left(\cot ^{2} x+2 \cot x+2\right) \\
& g^{\prime}(x)=f^{\prime}\left(\cot ^{2} x+2 \cot x+2\right)\left\{-2 \cot x \operatorname{cosec}^{2} x-x \operatorname{cosec}^{2} x\right\}
\end{aligned}
$$

For $g(x)$ be decreasing $g^{\prime}(x)<0$
$\Rightarrow \mathrm{f}^{\prime}\left((\cot x+1)^{2}+1\right) \cdot\left(-2 \operatorname{cosec}^{2} x\right)(\cot x+1)<0 ;$ As $\mathrm{f}^{\prime \prime}(x)>0$
i.e $f^{\prime}(x)$ is increasing
$\Rightarrow(\cot x+1)>0 \cot x>-1, \forall x\left(0, \frac{3 \pi}{4}\right)$
45. (A)

Tangent to $y^{2}=4 x$ in terms of m, is

$$
\begin{equation*}
y=m x+\frac{1}{m} \tag{i}
\end{equation*}
$$

and normal to $x^{2}=4$ by in terms of m

$$
\begin{equation*}
y=m x+2 b+\frac{b}{m^{2}} \tag{ii}
\end{equation*}
$$

\because equation (i) and (ii) are same then

$$
\begin{aligned}
& \frac{1}{m}=2 b+\frac{b}{m^{2}} \\
\Rightarrow & 2 b m^{2}-m+b=0
\end{aligned}
$$

For two different tangets

$$
D>0 \quad \Rightarrow 1-8 b^{2}>0
$$

or $|b|<\frac{1}{2 \sqrt{2}}$
46. (D)

Here $f^{\prime}(x)=\frac{2}{x+f(x)}>0$
$\Rightarrow f(x)$ is increasing function $[1,6]$
$\therefore \int_{1}^{6} f^{\prime}(x) d x \leq \int_{1}^{6} \frac{2}{x} d x$
$\left.\mathrm{f}(\mathrm{x})\right|_{1} ^{6} \leq\left. 2 \ell \mathrm{nx}\right|_{1} ^{6}$
$\mathrm{f}(6)-\mathrm{f}(1) \leq 2 \ell \mathrm{n}_{6}$
$\mathrm{f}(6) \leq 2 \ell \mathrm{n}_{6}$
47. (A)
$f(x)$ will have maxima only, if $a^{2}+1 \geq 2$
$\Rightarrow|a| \geq 1$

48. (C)
$f(x)=f^{\prime}(x) \times f^{\prime \prime \prime}(x)$ is satisfied only by the polynomial of degree 4 . Since $f(x)=0$ satisfies $x=$ $1,2,3$ only. Now it is clear that one of the roots is repeated twice.
$\Rightarrow \mathrm{f}^{\prime}(1) \mathrm{f}^{\prime}(2) \mathrm{f}^{\prime}(3)=0$
Solution for question no. 49 \& 50.

Let $2 \mathrm{~d}=$ length of common chord and $\angle \mathrm{PC}_{1} \mathrm{C}_{2}=\phi$
then $\sin \phi=\frac{d}{3}$
and $\sin \left(90^{\circ}-\phi\right)=\frac{d}{\lambda}$ or $\cos \phi=\frac{d}{\lambda}$
Now $\sin ^{2} \phi+\cos ^{2} \phi=\frac{d^{2}}{9}+\frac{d^{2}}{\lambda^{2}}=1$
$\Rightarrow \sin ^{2} \phi+\cos ^{2} \phi=\frac{d^{2}}{9}+\frac{d^{2}}{\lambda^{2}}=1$
$\therefore \lambda=4$
49. (B)
$\lambda=r=4$
50. (B)
$\because\left(C_{1} C_{2}\right)^{2}=\lambda^{2}+3^{2}=16+9=25$
$\triangle A B M, \sin \theta=\frac{B M}{A B}=\frac{4-3}{C_{1} C_{2}}=\frac{1}{5}$
$\therefore \sin 2 \theta=2 \sin \theta \cos \theta=2 \times \frac{1}{5} \times \sqrt{1-\left(\frac{1}{5}\right)^{2}}=\frac{4 \sqrt{6}}{25}$
Solution for question no. 51 \& 52.
$\because y=3 x$ is tangent to the parabola

$$
\begin{align*}
& 2 y=a x^{2}+b \tag{i}\\
\therefore & 2(3 x)=a x^{2}+b \\
\Rightarrow & a x^{2}-6 x+b=0 \\
& D=0 \\
\therefore & 36-4 a b=0 \\
\Rightarrow & a b=9 \tag{ii}
\end{align*}
$$

from (i) \& (ii)

$$
\begin{equation*}
2 y=a x^{2}+\frac{9}{a} \tag{iii}
\end{equation*}
$$

51. (C)
$\because \frac{a+b}{2} \geq \sqrt{a b}=3 \Rightarrow a+b \geq 6$
52.

(B)
$\because(2,6)$ is point of contact

$$
\begin{aligned}
2.6 & =4 a+\frac{9}{a} \\
\Rightarrow 2 a & =3
\end{aligned}
$$

53. (B)

Let $y=\sin x$

$$
f^{\prime}(x)=\cos x
$$

$\therefore \quad \cos \mathrm{x}_{1}=-\frac{1}{\cos \mathrm{x}_{2}}=\frac{\sin \mathrm{x}_{2}-\sin \mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
i.e. $\cos x_{1} \cos x_{2}=-1$
$\therefore \quad \sin \mathrm{x}_{1}=\sin \mathrm{x}_{2}=0$
\therefore No solution
54. (C)

$$
f(x)=y=|\ell n x|
$$

$\therefore \quad f^{\prime}\left(x_{1}\right)=-\frac{1}{f^{\prime}\left(x_{2}\right)}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
$\Rightarrow \frac{\ell n x_{1}}{\mathrm{x}_{1}\left|\ell \mathrm{n} \mathrm{x}_{1}\right|}=\frac{-\mathrm{x}_{2}\left|\ell n \mathrm{x}_{2}\right|}{\mid \ln \mathrm{x}_{2}}=\frac{\left|\ell \mathrm{nx}_{2}\right|-\left|\left(\ell \mathrm{nx}_{1}\right)\right|}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
$\Rightarrow \ell \operatorname{lnx}_{1} \ell \mathrm{ln}_{2}<0$
Let $0<x_{1}<1$ then $1<x_{2}$ and $x_{1} x_{2}=1$
$\frac{-1}{\mathrm{x}_{1}}=-\mathrm{x}_{2}=\frac{\ell \ln \mathrm{x}_{2}+\ell \mathrm{n} \mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\ell n \mathrm{x}_{1} \mathrm{x}_{2}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=0 \Rightarrow$ since $\mathrm{x}_{1} \mathrm{x}_{2}=1$, $\ln \mathrm{x}_{1} \mathrm{x}_{2}=0$
where is Not possible
\therefore No solution
55. (A, D)

For condition of tangency
$\frac{|4 \mathrm{k}+3 \mathrm{k}-12|}{5}=\mathrm{k} \Rightarrow 7 \mathrm{k}-12= \pm 5 \mathrm{k}$
$\therefore k=1,6$
56. (A, B, C)
$\mathrm{f}(\mathrm{x})=\ell \mathrm{n}(1-\ell \mathrm{nx})$; Domain (0, e)
$f^{\prime}(x)=-\frac{1}{1-\ell n x} \frac{1}{x}<0$
\Rightarrow Decreasing $\forall x$ in its domen hence (A) and (B) are incorrect $f^{\prime}(1)=-1 \Rightarrow(C)$ is also incorrect

As shown in graph y-Axis $\& x=e$ are two assymptotes, hence (D) is correct
57. (A, D)

By intermediate mean value theorem, $\frac{f(0)+f(2)}{2}=f(C) ; 0<C<2$
By Lagrange Mean Value theorem, $f(1)-f(0)=f^{\prime}\left(C_{1}\right) ; O<C_{1}<1$

$$
\begin{equation*}
f(2)-f(1)=f^{\prime}\left(C_{2}\right) ; 1<C_{2}<2 \tag{ii}
\end{equation*}
$$

on substracting equation (ii) from (iii)

$$
\begin{equation*}
f(2)+f(0)-2 f(1)=f^{\prime}\left(C_{2}\right)-f^{\prime}\left(C_{1}\right) \tag{iv}
\end{equation*}
$$

Again by LMVT we get

$$
\begin{align*}
& f^{\prime \prime}\left(C_{3}\right)=\frac{f^{\prime}\left(C_{2}\right)-f^{\prime}\left(C_{1}\right)}{C_{2}-C_{1}} \\
\Rightarrow & f^{\prime}\left(C_{2}\right)-f^{\prime}\left(C_{1}\right)=\left(C_{2}-C_{1}\right) f^{\prime \prime}\left(C_{3}\right)<0 \tag{v}
\end{align*}
$$

from equation (iv) \& (v) we get

$$
\begin{aligned}
& f(2)+f(0)-2 f(1)<0 \\
& f(2)+f(0)<2 f(1)
\end{aligned}
$$

58. (B, C)

Here $\frac{d y}{d x}=k^{2} e^{k x}$
$\left.\Rightarrow \frac{d y}{d x}\right|_{x=0}=k^{2}=\tan \theta$, where θ is angle made by X-Axis
Let ϕ be two angle made by Y-Axis
$\tan \theta=\tan \left(\frac{3 \pi}{2}-\phi\right)=\cot \phi$

$\Rightarrow \quad \cot \phi=\mathrm{k}^{2}$

$$
\phi=\sin ^{-1}\left(\frac{1}{\sqrt{1+\mathrm{k}^{4}}}\right)
$$

59. (A,C,D)

Radical Axis of $C_{1} \& C_{2}$ is $C_{1}-C_{2}=0$
$\Rightarrow x+2 y+2=0$
hence option (A) is correct
centre and radius of $C_{1}=0$ are $(1,2) \& 3$
\because Length of perpendicular from $(1,2)$ on $L=0$ is

$$
\left|\frac{1+4+2}{\sqrt{1+4}}\right|=\frac{7}{\sqrt{3}} \neq \text { radius }
$$

$\therefore \quad(B)$ option is wrong
L is also common chord of C_{1} and C_{2}
\therefore (C) option is correct
equation of $\mathrm{C}_{1}=0 \& \mathrm{C}_{2}=0$ are $(1,2)$ and $(-1,2)$
\therefore slope of line joining centre is

$$
=\frac{-2-2}{-1-1}=2=m_{1} \text { (say) }
$$

and slope of $L=0$ is $\frac{-1}{2}=m_{2}$ (say)
$\therefore \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
hence (D) is correct
60. (B,C)

Equation of tangent of parabola $y^{2}=40 x$ is

$$
\begin{equation*}
y=m x+\frac{10}{m} \tag{i}
\end{equation*}
$$

Equation of tangent of circle $x^{2}+y^{2}=50$

$$
\begin{equation*}
y=m x \pm 5 \sqrt{2} \sqrt{1+m^{2}} \tag{ii}
\end{equation*}
$$

Equation constant from (i) \& (ii) i.e.

$$
\begin{aligned}
& \frac{10}{m}= \pm 5 \sqrt{2} \sqrt{1+m^{2}} \\
\Rightarrow & m^{4}+m^{2}-2=0 \\
\Rightarrow & m= \pm 1
\end{aligned} \quad \Rightarrow \quad\left(m^{2}+2\right)\left(m^{2}-1\right)=0
$$

So equation of common tangent are

$$
\Rightarrow x-y+10=0 \quad x+y+10=0
$$

