SOLUTIONS

PHASE TEST-2
 GZRA-1901, GZR-1901(A) GZRS-1901 JEE MAIN PATTERN

 Test Date: 15-10-2017

 Test Date: 15-10-2017}

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1 st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800| 7544015993/4/6/7

PHYSICS

1. $\frac{\Delta T}{T} \times 100=\frac{\frac{1}{5}}{25} \times 100=0.8 \%$
\therefore (B)
2. $\mathrm{ML}^{2} \mathrm{~T}^{-2}=\frac{\alpha[L]^{1 / 2}}{[L]}$
$\alpha=[M]\left[L^{5 / 2}\right]\left[T^{-2}\right]$
\therefore (D)
3. $p=1 \mathrm{~mm}, N=100$

Least count, $C=\frac{P}{N}=\frac{1 \mathrm{~mm}}{100}=0.01 \mathrm{~mm}$
The instrument has a positive zero error $e=+N C=+4 \times 0.01=+0.04 \mathrm{~mm}$
Main scale reading is $2 \times(1 \mathrm{~mm})=2 \mathrm{~mm}$
Circular scale reading is $67(0.01)=0.67 \mathrm{~mm}$
\therefore observed reading is $R_{0}=2+0.67=2.67 \mathrm{~mm}$
So true reading $=R_{0}-e=2.63 \mathrm{~mm}$
\therefore (C)
4. $\vec{r}=\left(2 t-3 t^{2}\right) \hat{i}+2 t \hat{j}-t^{2} \hat{k}, \vec{v}=(2-6 t) \hat{i}+2 \hat{j}-2 t \hat{k}, \vec{a}=-6 \hat{i}-2 \hat{k}$

If $\overrightarrow{\mathrm{v}} \perp \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{a}}=0 \quad \therefore-6(2-6 t)+4 t=0,40 t=12$
$t=\frac{3}{10}=0.3 \mathrm{~s}$
$\therefore \quad(\mathrm{C})$
5. The maximum distance covered by the vehicle before coming to rest $=\frac{\mathrm{v}^{2}}{2 \mathrm{a}}=\frac{(15)^{2}}{2 \times 0.3}=375 \mathrm{~m}$.

The corresponding time $=t=\frac{v}{a}=\frac{15}{0.3}=50 \mathrm{sec}$.
Therefore after 50 sec , the distance covered by the vehicle $=375 \mathrm{~m}$, from the instant of beginning of braking.
The distance of the vehicle from the traffic signal after one minute $=(400-375) \mathrm{m}=25 \mathrm{~m}$.
\therefore (A)
6. $\quad \mathrm{R}=\frac{\mathrm{u}^{2}}{\mathrm{~g}} \sin 2 \theta=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$

Velocity of take off at P or $\mathrm{u}=\sqrt{\mathrm{Rg}}=\sqrt{90 \times 10}=30 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{u^{2}+2 g \sin \theta S} \quad[v \rightarrow$ velocity at point $O]$
$=\sqrt{(30)^{2}+2 \times 10 \times \frac{1}{\sqrt{2}} \times 80 \sqrt{2}}=50 \mathrm{~m} / \mathrm{s}$
\therefore (C)
7. If u is the initial speed of the second stone, then
$0=u^{2}-2 g(4 h)$
or $u=\sqrt{8 g h}$
If they meet at the height x from ground,
For $A, h-x=\frac{1}{2} g t^{2}$
For $B, x=(\sqrt{8 g h}) t-\frac{1}{2} g t^{2}$
$\therefore \mathrm{h}=\sqrt{8 \mathrm{gh}} \mathrm{t}$
or $t=\sqrt{\frac{h}{8 g}}$
\therefore (B)
8. As $F_{1}-F_{2}<2 \mu M g$, so system will not accelerate. Again here $F_{1}>F_{2}$, so block A is the driving block and block B is driven block. So friction on block A acts towards left but in the block B it may act left or right.
\therefore (B)
9. Distance travelled along $O E$ in $2 \mathrm{~s}=4 \times 2=8 \mathrm{~m}$

Distance travelled perpendicular to $O E$ in $2 \mathrm{~s}=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2}\left(\frac{6}{2}\right) 2^{2}=6 \mathrm{~m}$
Displacement $=\sqrt{6^{2}+8^{2}}=10 \mathrm{~m}$
\therefore (D)
10. Normal \leq contact force $\leq \sqrt{(\text { normal })^{2}+(\text { maximum friction })^{2}}$
$\mathrm{Mg} \leq \mathrm{F} \leq \sqrt{(\mathrm{Mg})^{2}+(\mu \mathrm{Mg})^{2}}$
\therefore (C)
11. (D)
$f=\mu R=\mu m g$, where m is mass of the combination, $f=0.5 \times 10 \times 10 \mathrm{~N}=50 \mathrm{~N}$.
So, a force of 10 N is unable to start the motion of the system. There is no relative motion between A and B.
12. (A)

Given that $\left(\overrightarrow{\mathrm{F}_{1}}+\overrightarrow{\mathrm{F}_{2}}\right) \cdot \overrightarrow{\mathrm{F}}_{1}=0$
where $F_{1}<F_{2}$
$\therefore \mathrm{F}_{1}^{2}+\mathrm{F}_{1} \mathrm{~F}_{2} \cos \theta=0$
Given that $F_{2}=2 F_{1}$
$\mathrm{F}_{1}^{2}+2 \mathrm{~F}_{1}^{2} \cos \theta=0$
$\cos \theta=-\frac{1}{2}$
$\therefore \theta=2 \pi / 3$
13. (D)

From the property of vector product, $\vec{A} \times \vec{B}$ is perpendicular to both \vec{A} and \vec{B} and $(\vec{A}+\vec{B})$ vector also, must lie in the plane formed by vector \vec{A} and \vec{B}. Thus \vec{C} must be perpendicular to $(\vec{A}+\vec{B})$ also but the cross product $(\vec{A} \times \vec{B})$ gives a vector \vec{C} which can not be perpendicular to itself. Thus the last statement is wrong.
14. (C)
15. (C)

Component of velocity in vertical should be same.
16. (D)
$\mathrm{H}=\frac{\mathrm{u}_{1}^{2} \sin ^{2} \theta_{1}}{2 \mathrm{~g}}=\frac{\mathrm{u}_{2}^{2} \sin ^{2} \theta_{2}}{2 \mathrm{~g}}$
17. (B)
$\mathrm{H}=\frac{\mathrm{u}^{2} \cos ^{2} \beta}{2 \mathrm{~g}} \Rightarrow 4 \cos \beta=\sqrt{2 \mathrm{gH}}$
$\mathrm{t}=\frac{\mathrm{u} \cos \beta}{\mathrm{g}}=\frac{\sqrt{2 \mathrm{gH}}}{\mathrm{g}} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
18. (D)

Since $v_{1 Y}=v_{2 Y}=0$
And $\quad Y_{1}=Y_{2}=-Y$
$\left(a_{1 Y}=a_{2 Y}=-g \cos \theta\right)$
Hence from, $y=v t+\frac{1}{2} a t^{2}$
Time taken for both the bullets will be same.
19. (A)
$\vec{u}=i+2 \hat{j}$
$\because \mathrm{y}=\mathrm{x} \tan \theta-\frac{\mathrm{gx}^{2}}{2 \mathrm{u}^{2} \cos ^{2} \theta}$
or $\mathrm{y}=\mathrm{x} \cdot \frac{\mathrm{u}_{\mathrm{y}}}{\mathrm{u}_{\mathrm{x}}}-\frac{\mathrm{gx}^{2}}{2 \cdot \mathrm{u}_{\mathrm{x}}^{2}}$
or $\mathrm{y}=\mathrm{x}\left(\frac{2}{1}\right)-\frac{\mathrm{gx}^{2}}{2 .(1)^{2}} \therefore \mathrm{y}=2 \mathrm{x}-5 \mathrm{x}^{2}$
20. (A)

Acceleration of m will give spring force. Then f.b.d. of M will give its acceleration.
21. (C)

Accelereation of A and B can be obtain by f.b.d. Then use kinematical equation.
22. (A)
23. (B)
24. (A)
25. (B)
26. (D)
27. Acceleration during ascent $\left(a_{1}\right)=g-\frac{F}{m} \quad$ (downward)

Acceleration during descent $\left(a_{2}\right)=g+\frac{F}{m} \quad$ (downward)

$$
a_{1}<a_{2}
$$

$\therefore \quad \mathrm{t}_{1}>\mathrm{t}_{2}$
\therefore (B)
28. $f_{1}=\mu_{s} m_{1} g=25 \mathrm{~N}, \quad\left(\mathrm{a}_{2}\right)_{\max }=\frac{\mathrm{f}_{1}}{\mathrm{~m}_{2}}=\frac{5}{6} \mathrm{~ms}^{-2}$
$\mathrm{a}_{\text {combined }}=\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}}=1 \mathrm{~ms}^{-2}$

$$
\left(\mathrm{a}_{2}\right)_{\max }<\mathrm{a}_{\text {combined }}, \therefore \text { there will be slipping between the blocks. }
$$

$\therefore \quad \mathrm{f}=\mu_{\mathrm{k}} \mathrm{m}_{1} \mathrm{~g}=12 \mathrm{~N}$

$$
\mathrm{a}_{2}=\frac{\mathrm{f}}{\mathrm{~m}_{2}}=\frac{12}{30}=0.4 \mathrm{~ms}^{-2}
$$

\therefore (B)
29. For safe crossing, the condition is that the man must cross the road by the time the truck covers the distance
$4+A C$ or $4+2 \cot \theta$

$\therefore \frac{4+2 \cot \theta}{8}=\frac{2 / \sin \theta}{\mathrm{v}}$
or $\quad v=\frac{8}{2 \sin \theta+\cos \theta}$
For minimum $v, \frac{d v}{d \theta}=0 \Rightarrow \tan \theta=2$
From equation (i), $\quad \mathrm{v}_{\text {min }}=\frac{8}{\sqrt{5}}=3.57 \mathrm{~m} / \mathrm{s}$
$\therefore \quad(\mathrm{C})$
30. $\frac{1}{2} \mathrm{gt}^{2}=\mathrm{H}$
$\mathrm{gt}=\mathrm{v}_{\mathrm{y}}$
$\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$
Range $=u_{x} t=v_{y} t=g t^{2}=2 H$
\therefore (B)
31. (D)
32. (B)
K.E. $=\frac{3}{2} R T$
$\therefore(\text { K.E. })_{1}=\frac{3}{2} \times R \times 400 \Rightarrow(\text { K.E. })_{2}=\frac{3}{2} \times R \times 800$
$\therefore \frac{(\mathrm{KE})_{2}}{(\mathrm{KE})_{1}}=2$ or $(\mathrm{KE})_{2}=2(\mathrm{KE})_{1}$
33. (D)
34. (C)

$$
2 \pi \mathrm{r}=\mathrm{n} \lambda
$$

or $\lambda=\frac{2 \pi \mathrm{r}}{\mathrm{n}}=\frac{2 \pi \mathrm{an}^{2}}{\mathrm{n}} \quad[\mathrm{z}=1$ for H$]$
or $\lambda=2 \pi a n=4 \pi a$
35. (B)
36. (D)
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O} \xrightarrow[-\mathrm{xH}_{2} \mathrm{O}]{\Delta} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Let the total molecular weight of the compound be y
Then, $\mathrm{y}-\frac{55.9}{100} \mathrm{y}=142 \quad\left[\because\right.$ M.W. of $\left.\mathrm{Na}_{2} \mathrm{SO}_{4}=142\right]$

$$
\begin{aligned}
& \frac{44.1}{100} y=142 \\
& y=\frac{142 \times 100}{44.1}=321.99
\end{aligned}
$$

Now, M.W. of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}=142+18 x$

$$
\begin{aligned}
142+18 x & =321.99 \\
x & =\frac{321.99-142}{18}=10
\end{aligned}
$$

37. (B)

Molality $=\frac{\frac{20 \times 0.75}{60}}{\frac{50}{1000}}=5$
38. (C)
$2 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
$M_{\text {mix }}=\frac{17}{1+\alpha}$
$\frac{r_{\text {mix }}}{r_{\mathrm{SO}_{2}}}=2=\sqrt{\frac{64}{\frac{17}{1+\alpha}}}$
$68=64+64 \alpha \Rightarrow \alpha=\frac{1}{16}$
\% dissociation = 6.25\%
39. (A)
$\left(\underset{x}{\mathrm{C}_{2} \mathrm{H}_{2}}+\underset{20-\mathrm{x}}{\mathrm{CO}}\right): 20 \mathrm{ml}$
$\mathrm{C}_{2} \mathrm{H}_{5}+\frac{5}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Initial :
$x \longrightarrow \frac{5}{2} x \longrightarrow 2 x$
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
$(20-x) \longrightarrow\left(\frac{20-x}{2}\right) \longrightarrow(20-x)$
Volume after reaction $=34 \mathrm{ml}$
$\mathrm{V}_{\mathrm{CO}_{2}}$ formed $+\mathrm{V}_{\mathrm{O}_{2}}$ remained $=34 \mathrm{ml}$
$2 x+(20-x)+\left\{30-\left(\frac{5}{2} x+\frac{20-x}{2}\right)\right\}=34$
$20+x+30-2 x-10=34$
$40-x=34$
$\mathrm{x}=6 \mathrm{ml}$
or
After passing KOH,
8 ml of O_{2} remained
$V_{\text {absorbed }}=34-8=26$
$\mathrm{V}_{\mathrm{CO}_{2}}=26$
$20+x=26$
$\mathrm{x}=6 \mathrm{ml}$
40. (D)

At $27^{\circ} \mathrm{C} ; 1 \mathrm{~V}=\mathrm{n}_{\mathrm{He}} \mathrm{R}(300) \Rightarrow \mathrm{n}_{\mathrm{He}}=\frac{\mathrm{V}}{300 \mathrm{R}}$
at $127^{\circ} \mathrm{C} ; 2 \mathrm{~V}=\left(\mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{P}}\right) \mathrm{R}(400) \Rightarrow \mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{P}}=\frac{\mathrm{V}}{200 \mathrm{R}}$
$\therefore \quad n_{P}=\frac{V}{600 R}$
at $327^{\circ} \mathrm{C} ; \mathrm{PV}=\left(\frac{\mathrm{V}}{300 \mathrm{R}}+\frac{2 \mathrm{~V}}{600 \mathrm{R}}\right) \mathrm{R}(600)$
$P=4$ atm
41. (B)

Those atoms which attached with sp hybridized carbon then it is present linearly.
42. (A)

43. (C)

44. (B)

45. (D)

46. (C)
S.F. $=\mathrm{HOOC}-\mathrm{COOH}$, M.F. $=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}, \quad$ M.W. $=90$
47. (B)

48. (B)
(A)

2, 2, 3-Trimethylbutane
(C)

3, 3-Dimethylhexane
(D)

3-Ethyl-2,2-dimethyl pentane
49. (A)

50. (A)

51. (B)
$\mathrm{NaOH} \rightarrow \mathrm{Na}+\stackrel{\stackrel{\ominus}{\mathrm{O}}}{\mathrm{O}}-\mathrm{H}$
52. (B)

53. (D)

54. (B)

(due to Back Bonding)

(No back bonding)

(No back bonding due to large size of atoms)
55. (D)

As electronegativity of halogen attached with sulphur increases, suphur becomes more electron deficient and hence its tendency of get electrons from oxygen through $p \pi-d \pi$ bonding also increases i.e. extent of $p \pi-d \pi$ bonding increases and hence, bond order also increases.
56. (A)
(A) Lattic energy depend upon:
(i) Size of cation and anion both
(ii) Product of charges at cation \& anion
(B) $\mathrm{CdCl}_{2}>\mathrm{CaCl}_{2}-$ Both Hydration \& Lattice is high than CaCl_{2}

As per (born haber cycle)
(C) $\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$(Hydration energy)
so, $\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$ (Solubility in water)
(D) $\mathrm{Be}_{3} \mathrm{~N}_{2}>\mathrm{Mg}_{3} \mathrm{~N}_{2}>\mathrm{Ca}_{3} \mathrm{~N}_{2}$ (Thermal stability)
57. (A)

Lattice α Hardness
(A) $\mathrm{Ti}>\mathrm{ScN}>\mathrm{MgO}>\mathrm{NaF}-$ order of lattic energy
(B) $\mathrm{NaCl}<\mathrm{CsCl}-$ Co-ordinate no. $\mathrm{NaCl}=6$
$\mathrm{CsCl}=8$
(C) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}-$ Melting point
58. (B)
$\mathrm{Cs}^{+} I_{3}^{-}$(large cation stabilises by large anion)
59. (D)
$\underset{2 S^{\prime}}{\mathrm{Li}}+\mathrm{e}^{-} \xrightarrow{\mathrm{Ea}} \underset{2 \mathrm{~S}^{2}}{\mathrm{Li}^{-}}$exothermic
60. (C)
(I) $\mathrm{HClO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HNO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}$
(II) $\mathrm{HCIO}_{3}>\mathrm{HBrO}_{3}>\mathrm{HIO}_{3}$

MATHEMATICS

61. (A)

Using $\frac{3 \sin 76^{\circ} \cdot \sin 16^{\circ}+\cos 76^{\circ} \cos 16^{0}}{\cos 76^{\circ} \sin 16^{0}+\sin 76^{\circ} \cos 16^{\circ}}$

$$
\begin{aligned}
& =\frac{2 \sin 76^{0} \sin 16^{0}+\left[\sin 76^{0} \sin 16^{0}+\cos 76^{\circ} \cos 16^{\circ}\right]}{\sin 92^{0}}=\frac{\cos 60^{\circ}-\cos 92^{\circ}+\cos 60^{\circ}}{\sin 92^{\circ}} \\
& =\frac{1-\cos 92^{\circ}}{\sin 92^{\circ}}=\frac{2 \sin ^{2} 46^{\circ}}{2 \sin 46^{\circ} \cos 46^{0}}=\tan 46^{\circ}=\cot 44^{\circ}
\end{aligned}
$$

62. (C)

$$
\begin{aligned}
& \frac{a_{1}+a_{2}+a_{3} \ldots . a_{p}}{a_{1}+a_{2}+a_{3} \ldots . a_{q}}=\frac{p^{2}}{q^{2}} \\
& \Rightarrow \frac{\frac{p}{2}\left[2 a_{1}+(p-1) d\right]}{\frac{q}{2}\left[2 a_{1}+(q-1) d\right]}=\frac{p^{2}}{q^{2}}
\end{aligned}
$$

$\frac{a_{1}+\left(\frac{p-1}{2}\right) d}{a_{1}+\left(\frac{q-1}{2}\right) d}=\frac{p}{q}$
for a_{6} put $\frac{\mathrm{p}-1}{2}=5$ and for a_{21} put $\frac{\mathrm{p}-1}{2}=20$
$\Rightarrow p=11, q=41$
$\Rightarrow \frac{\mathrm{p}}{\mathrm{q}}=\frac{11}{41}$
63. (D)
$\frac{\mathrm{C}_{1} \mathrm{P}}{\mathrm{C}_{2} \mathrm{P}}=\frac{2}{1}$
$\therefore \quad \mathrm{C}_{2}$ is the midpoint of C_{1} and P
$\therefore \quad \mathrm{P}(8,0)$

equation of line through P

$$
\begin{aligned}
& y-0=m(x-8) \\
& m x-y-8 m=0
\end{aligned}
$$

perpendicular from $(2,0)=$ radius i.e. 2

$$
\begin{aligned}
& \quad\left|\frac{2 m-8 m}{\sqrt{1+m^{2}}}\right|=2 \Rightarrow 9 m^{2}=1+m^{2} \Rightarrow \quad m=-\frac{1}{2 \sqrt{2}} \text { or } \frac{1}{2 \sqrt{2}} \text { (rejected) } \\
& \therefore \quad y=-\frac{1}{2 \sqrt{2}}(x-8)
\end{aligned}
$$

for y -intercept put $\mathrm{x}=0$

$$
y=\frac{8}{2 \sqrt{2}}=2 \sqrt{2}
$$

64. (A)

Let equation of line $\frac{x}{\cos \theta}=\frac{y}{\sin \theta}=r$
(OAcos $\theta, O A \sin \theta)$, and $(O B \cos \theta, O B \sin \theta)$
Will satisfy $y-x-10=0$ and $y-x-20=0$
respectively
If $\mathrm{P}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$ then $\frac{1}{\mathrm{r}^{2}}=\left(\frac{\sin \theta-\cos \theta}{10}\right)^{2}+\left(\frac{\sin \theta-\cos \theta}{20}\right)^{2}$
$\Rightarrow(r \cos \theta-r \sin \theta)^{2}=80 \Rightarrow$ locus of P is $(y-x)^{2}=80$
65. (D)

Here $a x+b y=20$ is a chord with $(2,3)$ as its mid-point.
$\Rightarrow-\frac{\mathrm{a}}{\mathrm{b}}=-1 \quad \Rightarrow \mathrm{a}=\mathrm{b}$
Now, $2 a+3 b=20$
$\Rightarrow 5 \mathrm{a}=20 \Rightarrow \mathrm{a}=\mathrm{b}=4$
Hence $a^{103}+b^{103}=2^{207}$
66. (D)

$$
\alpha=\frac{\mathrm{h}}{3} \quad \beta=\frac{\mathrm{k}+6}{3}
$$

Hence $\frac{h^{2}}{9}+\frac{(k+6)^{2}}{9}+4 \times \frac{h}{3}-6 \times \frac{k+6}{3}+9=0 \Rightarrow h^{2}+k^{2}+12 h-6 k+9=0$
$\Rightarrow x^{2}+y^{2}+12 x-6 y+9=0$
67. (A)
$\mathrm{OP}=\mathrm{CP}=\frac{\mathrm{h}}{\sqrt{2}}=\mathrm{AC}$
$C M=h \sin 30^{\circ}=\frac{h}{2}$
From $\triangle \mathrm{ACM}$

$$
\begin{aligned}
& A C^{2}=C M^{2}+A M^{2} \\
& \frac{h^{2}}{2}=1+\frac{h^{2}}{4} \Rightarrow h^{2}=4
\end{aligned}
$$

$\mathrm{h}=2$
radius $=\frac{\mathrm{h}}{\sqrt{2}}=\sqrt{2}$
equation of circle
$(x-2)^{2}+y^{2}=2$
68. (C)
$a, a r, a^{2}, a r^{3}$
$a-2, a r-7, a r^{2}-9, a r^{3}-5$
$\therefore \quad 2(a r-7)=(a-2)+\left(a r^{2}-9\right)$
$\Rightarrow 2 a r-14=a\left(1+r^{2}\right)-11$
$\Rightarrow a(1-r)(r-1)=3$
Also 2 $\left(a r^{2}-9\right)=(a r-7)+\left(a r^{3}-5\right)$
$\Rightarrow 2 a r^{2}-18=\operatorname{ar}\left(1+r^{2}\right)-12$
$\Rightarrow \operatorname{a.r}(r-1)(1-r)=6$
From (i) \& (ii), $\mathrm{r}=2$ and $\mathrm{a}=-3$
\therefore third term of A. P. $=\mathrm{ar}^{2}-9=(-3) \cdot(2)^{2}-9=-12-9=-21$
69. (B)
A.M \geq G.M
$\frac{a+b+c}{3} \geq(a b c)^{\frac{1}{3}} ;$ for $(a, b, c>0)$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c} \geq 3(\mathrm{abc})^{\frac{1}{3}}$
but given $a b^{2} c^{3}, a^{2} b^{3} c^{4}, a^{3} b^{4} c^{5}$ are in A.P
Hence 2abc $=1+a^{2} b^{2} c^{2} \Rightarrow(a b c-1)^{2}=0 \Rightarrow a b c=1$
hence minimum value of

$$
a+b+c=3(a b c)^{\frac{1}{3}}=3 \cdot(1)^{\frac{1}{3}}=3
$$

70. (C)

Let T_{r} be the $r^{\text {th }}$ term of given series, $T_{r}=\frac{2 r+1}{\frac{r(r+1)(2 r+1)}{6}}=\frac{6}{r(r+1)}=6\left[\frac{1}{r}-\frac{1}{r+1}\right]$

$$
\sum_{r=1}^{35} T_{r}=6\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\ldots . .+\frac{1}{35}-\frac{1}{36}\right]=6\left[1-\frac{1}{36}\right]=\frac{35}{6}
$$

71. (C)

$$
\begin{align*}
& S=\frac{5}{13}+\frac{55}{13^{2}}+\frac{555}{13^{3}}+\ldots \ldots \tag{i}\\
& \frac{S}{13}=\frac{5}{13^{2}}+\frac{55}{13^{3}}+\ldots \ldots \infty \tag{ii}
\end{align*}
$$

(i) - (ii)

$$
\frac{12}{13} S=\frac{5}{13}+\frac{50}{13^{2}}+\frac{500}{13^{3}}+\ldots \ldots . \Rightarrow \mathrm{S}=\frac{13}{12} \times\left[\frac{\frac{5}{13}}{1-\frac{10}{13}}\right]=\frac{65}{36}
$$

72. (A)

$$
\begin{aligned}
& \frac{x}{-1 / 2}+\frac{y}{+1}=1 \quad \frac{x}{-3}+\frac{y}{3 / 2}=1 \\
& \left|\left(-\frac{1}{\lambda}\right)\right||(-3)|=1 \cdot \frac{3}{2}
\end{aligned}
$$

$$
\lambda=2 \text { (Here } \lambda \text { can't be negative) }
$$

73. (C)

$$
P \equiv \frac{x}{\cos \frac{\pi}{4}}=\frac{y}{\sin \frac{\pi}{4}}=6 \sqrt{2} \Rightarrow x=6, y=6
$$

Since $P(6,6)$ lie on circle

$$
\begin{equation*}
72+12(g+f)+c=0 \tag{i}
\end{equation*}
$$

Since $y=x$ touches the circle, then

$$
2 x^{2}+2 x(g+f)+c=0 \text { has equal roots } D=0
$$

$$
\begin{equation*}
4(g+f)^{2}=8 c \Rightarrow(g+f)^{2}=2 c \tag{ii}
\end{equation*}
$$

From equation (i), we get

$$
(12(\mathrm{~g}+\mathrm{f}))^{2}=[-(\mathrm{c}+72)]^{2} \Rightarrow 144(2 \mathrm{c})=(\mathrm{c}+72)^{2} \Rightarrow(\mathrm{c}-72)^{2}=0 \Rightarrow \mathrm{c}=72
$$

74. (B)

Area of trapezium $A B C D=\frac{1}{2}(a+3 a)(2 r)=4 \Rightarrow a r=1$
Equation of line $B C$ is $y=-r^{2}\left(x-\frac{3}{r}\right)$

75. (C)
76. (A)
77. (C)

$$
\left.\begin{array}{l}
--20 \\
--40 \\
--60 \\
--04
\end{array}\right\} \quad\left\lfloor 3 \times 4=24 \quad \begin{array}{l}
--12 \\
--16 \\
--24 \\
--64
\end{array}\right\} \quad 2 \times 2 \times 4=16
$$

Total number of numbers $=24+16=40$
78. (A)

Alphabetical order of letters is B, E, K, R, U
words with ' B ' $=4!=24$
words with ' E ' $=4!=24$
words with ' KB ' $=3!=6$
Words with ' $K E$ ' $=3!=6$
Words with 'KR' $=3!=6$
Next word will be KUBER
Whose rank is $=24+24+18+1=67$
79. (A)

The circumcentre of $\triangle \mathrm{PQR}$ will be orthocentre of $\triangle \mathrm{ABC}$ which is at $(1,1)$.
80. (A)

Let O_{1} and O_{2} are the centre of circles with radii r_{1} and r_{2} respectively and $\angle A O_{1} O_{2}=\theta$
$A D=r_{1} \sin \theta ; A D=r_{2} \cos \theta$
$A D^{2}\left(\frac{1}{r_{1}{ }^{2}}+\frac{1}{r_{2}^{2}}\right)=1 \Rightarrow A D=\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$ so $A E=2 A D$
81. (A)
$x+\sqrt{3} y=\sqrt{3}$
$(y+1)=\frac{1}{\sqrt{3}} x$
$\sqrt{3} y=x-\sqrt{3}$

82. (A)

Equation of $A B$ is $T=0$ i.e. $x=\frac{4}{3}, O D=\frac{4}{3}$
$\Rightarrow A D^{2}=O A^{2}-O D^{2}$
$\Rightarrow A D^{2}=4-\frac{16}{9}=\frac{20}{9}$
$\Rightarrow A D^{2}=\frac{2 \sqrt{5}}{3} \Rightarrow A B=\frac{4 \sqrt{5}}{3} \Rightarrow$ Area of triangle
$P A B=\frac{1}{2} \cdot \frac{4 \sqrt{5}}{3} \cdot\left(3-\frac{4}{3}\right)=\frac{10 \sqrt{5}}{9}$ sq.units

83. (B)

Let $y=m_{1} x$ and $y=m_{2} x$ be the two lines represented by $a x^{2}+2 h x y+b y^{2}=0$ so that $m_{1}+m_{2}=-\frac{2 h}{b}$ and $m_{1} m_{2}=\frac{a}{b}$

Given $m_{2}=m_{1}^{2}$
$\therefore \quad$ From (1), $\mathrm{m}_{1}+\mathrm{m}_{1}^{2}=-\frac{2 h}{\mathrm{~b}}$
and $\quad \mathrm{m}_{1} \cdot \mathrm{~m}_{1}^{2}=\frac{\mathrm{a}}{\mathrm{b}}$ i.e., $\mathrm{m}_{1}^{3}=\frac{\mathrm{a}}{\mathrm{b}}$
The required condition is obtained by eliminating m_{1} between (2) and (3).
Cubing (2), we get $\left(m_{1}+m_{1}^{2}\right)^{3}=\left(-\frac{2 h}{b}\right)^{3}$
$\Rightarrow m_{1}^{3}+m_{1}^{6}+3 m_{1}^{3}\left(m_{1}+m_{1}^{2}\right)=-\frac{8 h^{2}}{\mathrm{~b}^{3}}$
$\Rightarrow \quad \frac{a}{b}+\frac{a^{2}}{b^{2}}+3 \frac{a}{b}\left(-\frac{2 h}{b}\right)=-\frac{8 h^{3}}{b^{3}} \quad[U \operatorname{sing}$ (2) and (3)]
$\Rightarrow \quad a b^{2}+a^{2} b-6 a b h=-8 h^{3}$ or $a b(a+b)-6 a b h+8 h^{3}=0$.
84. (B)

The equation of the bisectors of the angles between the lines $x^{2}-2 p x y-y^{2}=0$ is

$$
\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p} \quad \text { or } \quad \frac{x^{2}-y^{2}}{2}=-\frac{x y}{p}
$$

i.e. $\quad x^{2}+\frac{2}{p} x y-y^{2}=0$

Also, $x^{2}-2 q x y-y^{2}=0$
is the equation of the bisectors of the angles between the same lines (given).
From (1) and (2), by comparing coefficients, we get $\frac{1}{1}=\frac{2 / p}{-2 q}=\frac{-1}{-1}$
i.e. $\quad 1=-\frac{1}{\mathrm{pq}}$ or $\mathrm{pq}=-1$.
85. (A)
86. (C)
$\mathrm{h}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \mathrm{~K}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}$
$x^{2}+\left(\frac{4 x+7}{-5}\right)^{2}=a^{2}$
$\Rightarrow 41 x^{2}+56 x+49-a^{2} .25=0$
$\therefore \quad \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}=\frac{-56}{41 \times 2}=\frac{-28}{41}$

Similarly, $\frac{y_{1}+y_{2}}{2}=\frac{-70}{41 \times 2}=\frac{-35}{41}$
87. (B)

If θ be the angle that the line $x-2 y-1=0$ makes with the positive x-axis, measured in the anti-clockwise sense, then $\tan \theta=\frac{1}{2} \quad \therefore \cos \theta=\frac{2}{\sqrt{5}}, \sin \theta=\frac{1}{\sqrt{5}}$
$Q \equiv(3+r \cos \theta, 5+r \sin \theta)$
$\therefore 2\left(3+r \cdot \frac{2}{\sqrt{5}}\right)+3\left(5+\frac{r}{\sqrt{5}}\right)-4=0$
$\Rightarrow r=\frac{-17 \cdot \sqrt{5}}{7}$
$\therefore \quad$ distance $=\frac{17 \sqrt{5}}{7}$ unit
88. (C)

We have, $x+y+\lambda(2 x-y+1)=0$
Clearly, it represents a family of line passing through the intersection of the lines $x+y=0$ and $2 x-y+1=0$ i.e. the point $(-1 / 3,1 / 3)$

The required line passes through $(-1 / 3,1 / 3)$ and is perependicular to the line joining $(1,4)$ and $(-1 / 3,1 / 3)$. So, its equation is

$$
y-\frac{1}{3}=-\frac{4}{11}\left(x+\frac{1}{3}\right) \Rightarrow 12 x+33 y=7
$$

89. (B)

The given circle $x^{2}+y^{2}-4 x-6 y-12=0$ has its centre at $(2,3)$ and radius equal to 5 .
Let (h, k) be the coordinates of the centre of the required circle. Then, the point (h, k) divides the line joining $(-1,-1)$ to $(2,3)$ in the ratio $3: 2$, where 3 is the radius of the required circle. Thus, we have

$$
\mathrm{h}=\frac{3 \times 2+2(-1)}{3+2}=\frac{4}{5} \text { and } \mathrm{k}=\frac{3 \times 3+2(-1)}{3+2}=\frac{7}{5}
$$

Hence, the equation of the required circle is

$$
\left(x-\frac{4}{5}\right)^{2}+\left(y-\frac{7}{5}\right)^{2}=3^{2} \Rightarrow 5 x^{2}+5 y^{2}-8 x-14 y-32=0
$$

90. (A)

According to question
$A(0,0)$ and $B(1,1)$ are the end points of the diameter of the circle.

