SOLUTIONS

PHASE TEST-1 RB-1810 TO 1812 RBK-1805

 JEE MAIN PATTERN

 JEE MAIN PATTERN

 Test Date: 15-10-2017

 Test Date: 15-10-2017}

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (A)
$\left(\overrightarrow{\mathrm{A}}_{1}+2 \overrightarrow{\mathrm{~A}}_{2}\right) \cdot\left(3 \overrightarrow{\mathrm{~A}}_{1}-4 \overrightarrow{\mathrm{~A}}_{2}\right)$
$=3\left|\overrightarrow{\mathrm{~A}}_{1}\right|^{2}+2\left|\overrightarrow{\mathrm{~A}}_{1}\right|\left|\overrightarrow{\mathrm{A}}_{2}\right| \cos \theta-8\left|\overrightarrow{\mathrm{~A}}_{2}\right|^{2}$
$=\left(\left|\overrightarrow{\mathrm{A}}_{1}\right|^{2}+2\left|\mathrm{~A}_{1}\right|\left|\overrightarrow{\mathrm{A}}_{2}\right| \cos \theta+\left|\overrightarrow{\mathrm{A}}_{2}\right|^{2}\right)+2\left|\overrightarrow{\mathrm{~A}}_{1}\right|^{2}-9\left|\overrightarrow{\mathrm{~A}}_{2}\right|^{2}$
$=3^{2}+2 \times 2^{2}-9 \times 3^{2}=9+8-81=-64$
2. (C)

$$
\cos (\pi-2 \theta)=\frac{\mathrm{d}^{2}+\mathrm{d}^{2}-\mathrm{R}^{2}}{2 \mathrm{~d}^{2}}=1-\frac{\mathrm{R}^{2}}{2 \mathrm{~d}^{2}}
$$

$\Rightarrow-\cos 2 \theta=1-\frac{R^{2}}{2 d^{2}}$
$\Rightarrow \frac{\mathrm{R}^{2}}{2 \mathrm{~d}^{2}}=1+\cos 2 \theta=2 \cos ^{2} \theta$
$\Rightarrow \mathrm{d}=\frac{\mathrm{R}}{2 \cos \theta}$
3. (B)
4. (A)

Δx at $P=\frac{d x}{D}=\frac{d^{2}}{2 D}=\frac{(5 \lambda)^{2}}{2 \times 10 \times d}$
$\Delta x=\frac{(5 \lambda)^{2}}{2 \times 10 \times 5 \lambda}=\frac{\lambda}{4}$
$\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}=\frac{\pi}{2}$
$I_{0}=4 I \Rightarrow I=\frac{I_{0}}{4}$
$I_{\text {net }}=I+1+2 \sqrt{I} \sqrt{I} \cos \frac{\pi}{2}=2 I=\frac{I_{0}}{2}$
5. (D)
6. (C)
$\Delta=(\mathrm{n}+4) \lambda-\mathrm{n} \lambda=4 \lambda$
at Y point, forms

FourthBrightFringe

7. (D)
$\mathrm{f}_{\mathrm{o}}=1.5 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=6.25 \mathrm{~cm}, \mathrm{u}_{\mathrm{o}}=-2 \mathrm{~cm}, \mathrm{v}_{\mathrm{e}}=-\mathrm{D}=-25 \mathrm{~cm}$
By objective lens $\frac{1}{f_{o}}=\frac{1}{v_{o}}-\frac{1}{u_{o}}$
$\frac{1}{1.5}=\frac{1}{\mathrm{v}_{\mathrm{o}}}-\frac{1}{-2} \Rightarrow \frac{1}{\mathrm{v}_{\mathrm{o}}}=\frac{1}{1.5}-\frac{1}{2}$ or $\mathrm{v}_{\mathrm{o}}=6 \mathrm{~cm}$
By eye piece $\frac{1}{\mathrm{f}_{\mathrm{e}}}=\frac{1}{\mathrm{v}_{\mathrm{e}}}-\frac{1}{\mathrm{u}_{\mathrm{e}}}$
$\frac{1}{6.25}=\frac{1}{-25}-\frac{1}{-u_{e}} \Rightarrow \frac{1}{u_{e}}=\frac{1}{6.25}+\frac{1}{25}=\frac{4}{25}+\frac{1}{25}=\frac{1}{5}$
$u_{e}=5 \mathrm{~cm}$, Length of tube $=L=v_{o}+u_{e}=6.0 \mathrm{~cm}+5.0 \mathrm{~cm}, L=11 \mathrm{~cm}$
8. (C)
9. (D)
10. (A)
$2 \mathrm{kx} \cos 30^{\circ}=\left(\frac{4 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{g}$
11. (A)

Using lami's theorem

$\frac{\mathrm{mg}}{\sin \left(180^{\circ}-37^{\circ}\right)}=\frac{\mathrm{N}_{2}}{\sin \left(180^{\circ}-37^{\circ}\right)}$
$\therefore \mathrm{N}_{2}=\mathrm{mg}$
12. (C)

By F.B.D of m
$N \sin \theta=m g$ and $N \cos \theta=m a$
$\therefore \tan \theta=\frac{\mathrm{g}}{\mathrm{a}} \Rightarrow \mathrm{a}=\mathrm{g} \cot \theta$
$\therefore \mathrm{F}=(\mathrm{m}+\mathrm{M}) \mathrm{g} \cot \theta$
13. (A)

As there is no friction, horizontal force on B is therefore $F=100 \mathrm{~N}$
$\therefore \mathrm{a}=\frac{100}{20}=5 \mathrm{~m} / \mathrm{s}^{2}$
but no horizontal force on A acts therefore $\mathrm{T}=0$
14. (C)
$\mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a}) \Rightarrow 360=60(10-\mathrm{a}) \Rightarrow \mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$
15. (C)

When all are pulling

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}_{\text {net }}=100 \times 3 \hat{\mathrm{i}} \tag{1}
\end{equation*}
$$

When 'A' stops

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}_{\text {net }}-\overrightarrow{\mathrm{F}}_{\mathrm{A}}=100 \times 1(-\hat{\mathrm{i}}) \tag{2}
\end{equation*}
$$

When 'B' stops

$$
\overrightarrow{\mathrm{F}}_{\text {net }}-\overrightarrow{\mathrm{F}}_{\mathrm{B}}=100 \times 24 \hat{j}
$$

from these three get

$$
\overrightarrow{\mathrm{F}}_{\mathrm{A}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}} \text { and solve }
$$

16. (A)
$\frac{3}{4}$ th energy is lost i.e., $\frac{1}{4}$ th kinetic energy is left. Hence, its velocity becomes $\frac{\mathrm{v}_{0}}{2}$ under a retardation of $\mu \mathrm{g}$ in time t_{0}.
$\therefore \frac{\mathrm{v}_{0}}{2}=\mathrm{v}_{0}-\mu \mathrm{g} \mathrm{t}_{0}$
or $\mu \mathrm{gt}_{0}=\frac{\mathrm{v}_{0}}{2}$ or $\mu=\frac{\mathrm{v}_{0}}{2 \mathrm{~g} \mathrm{t}_{0}}$
17. (A)

mg
$\mu N \cos \theta=N \sin \theta$
$\mu=\tan \theta$
18. (B)
19. (B)

Force diagram of block for the view shown

$\Rightarrow \mathrm{N}=\frac{\mathrm{mg} \cos \alpha}{2 \sin (\theta / 2)}$
\therefore Net friction up the plane $=2 \mu \mathrm{~N}$
$=\mu \mathrm{mg} \frac{\cos \alpha}{\sin (\theta / 2)}$
$\therefore a=g\left\{\sin \alpha-\mu \frac{\cos \alpha}{\sin (\theta / 2)}\right\}$
20. (C)

$$
\text { Net force on } \mathrm{m}_{3}=\sqrt{(30)^{2}+(40)^{2}}=50 \mathrm{~N}
$$

and limiting friction on $m_{3}=\mu m_{3} g=60 N$
\therefore System remain in equilibrium and friction on $\mathrm{m}_{3}=50 \mathrm{~N}$
21. $4 \mathrm{~T}=\mathrm{mg}$

$\therefore \quad(\mathrm{A})$
22. Applying Snell's law between the points O and P, we have

$$
\begin{aligned}
& 2 \times \sin 60^{\circ}=\left(\sin 90^{\circ}\right) \times \frac{2}{\left(1+H^{2}\right)}, 2 \times \frac{\sqrt{3}}{2}=1 \times \frac{2}{\left(1+H^{2}\right)} \\
& \left(1+H^{2}\right)=\frac{2}{\sqrt{3}}, \quad H=\sqrt{\left(\frac{2}{\sqrt{3}}-1\right)}
\end{aligned}
$$

(A)
23. If angle made by the incident ray with the normal (i.e. y axis) is θ. Then

$$
\tan \theta=\frac{1}{2} \Rightarrow \sin \theta=\frac{1}{\sqrt{5}}
$$

If the refracted ray makes angle θ^{\prime} with y-axis then from Snell's Law

$$
2 \times \frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{2} \times \sin \theta^{\prime} \Rightarrow \sin \theta^{\prime}=\frac{4}{5}
$$

The unit vector along with the refracted ray moves is given by
$-1 \times \sin \theta^{\prime} \hat{i}-1 \times \cos \theta^{\prime} \hat{j}=-\frac{4}{5} \hat{i}-\frac{3}{5} \hat{j}$
$\therefore \quad(B)$
24. x is distance of object from surface.

Apparent depth of object from surface $=\frac{x}{\mu}$
Apparent depth of image from surface $=\frac{x+2 h}{\mu}$
Distance between the apparent depths of object and image $=\frac{2 h}{\mu}$

$$
\therefore \quad \text { (B) }
$$

25. $\mu \sin \theta=\sin 45^{\circ}$

$$
\frac{\mu h}{h \sqrt{5}}=\frac{1}{\sqrt{2}} ; \quad \mu=\sqrt{\frac{5}{2}}
$$

$\therefore \quad$ (B)
26. (A)

Resolve the applied force and get normal reaction and limiting friction
27. (C)

Common acceleration $a=\frac{K A}{2 m}$
$\therefore \mathrm{f}_{\mathrm{r}}=\mathrm{ma}=\frac{\mathrm{KA}}{2}$
28. (C)
$1.6 \times 10^{-20} \mathrm{C}$ is not possible because it does not obey quantization of charge
29. (C)
30. (D)

CHEMISTRY

31. (B)

1 mole $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$=12$ mole H -atoms $=4$ mole O -atom
6 mole H -atoms $=2$ mole O -atoms
32. (C)
33. (A)
L.R. is D in reaction (I)
(1) $3 \mathrm{D}+4 \mathrm{E} \xrightarrow{80 \%} 5 \mathrm{C}+\mathrm{A}$

9 mole 14 mole $\frac{5}{3} \times 9 \times 0.8=12$ mole
(2) $3 \mathrm{C}+5 \mathrm{G} \xrightarrow{50 \%} 6 \mathrm{~B}+\mathrm{F}$ 12 mole +4 mole
L.R. is G in reaction (2)

Moles of B formed $=\frac{6}{5} \times 4 \times 0.5=2.4$
34. (A)

Balancing the equation, we have

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}
$$

35. (A)
$\underset{\times g}{\mathrm{NaOH}}+\underset{\mathrm{yg}}{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
In presence of HPh,
Eq. of $\mathrm{NaOH}+\frac{1}{2} \times$ eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\text { = Eq. of } \mathrm{HCl}
$$

$\frac{x}{40} \times 1+\frac{1}{2} \times \frac{y}{106} \times 2=\frac{17.5}{1000} \times \frac{1}{10}$
After this MeOH is added
$\frac{1}{2} \times$ eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ eq. of HCl
$\frac{1}{2} \times \frac{y}{106} \times 2=2.5 \times \frac{1}{10} \times \frac{1}{1000}$
Placing the value of Eqn
$\frac{x}{40}+\frac{2.5}{10000}=\frac{17.5}{10000}$
$\frac{x}{40}=15 \times 10^{-4} \Rightarrow x=15 \times 40 \times 10^{-4}$
$x=0.06 \mathrm{~g}$
36. (A)
$\mathrm{I}_{2}+\mathrm{AsO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HAsO}_{4}^{2-}+2 \mathrm{I}^{-}+3 \mathrm{H}^{+}$
$\mathrm{m}-\mathrm{eq}$. of HAsO_{2} (in 50 mL) $=\mathrm{m}$-eq. of $\mathrm{I}_{2}=35 \times 0.05 \times 2=3.5$
m-eq. of HAsO_{2} in $250 \mathrm{~mL}=3.5 \times \frac{250}{50}=17.5$
mass of HAsO_{2} in sample $=\frac{17.5}{2} \times(108) \times 10^{-3}=0.945 \mathrm{~g}$
$\%$ of HAsO_{2} in the sample $=\frac{0.945}{3.78} \times 100=25 \%$
37. (A)
$V=\frac{n R T}{P}=\frac{10 \times 0.0821 \times T}{0.821}$
$V=T$
$\log \mathrm{V}=\log \mathrm{T}$
slope $=1$

$$
\theta=45^{\circ}
$$

38. (B)
$h \times d$ (glycerine) $=h \times d$ (mercury)
$5 \times 2.75=h \times 13.6$
$\mathrm{h}=1 \mathrm{~m}$
$P_{\text {gas }}=1760 \mathrm{~mm}$ Or $(1000+760) \mathrm{mm} \mathrm{Hg}$
PV = nRT
$\frac{1760}{760} \times 10=n \times 0.082 \times 300$

$$
\mathrm{n}=0.94 \mathrm{~mol}
$$

39. (C)

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{N}_{2}}=\frac{77}{28}=275 \\
& \mathrm{n}_{\mathrm{O}_{2}}=\frac{23}{32}=0.72
\end{aligned}
$$

$\%$ by volume of $\mathrm{O}_{2}=\%$ by mol of O_{2}
$=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\text { Total moles }} \times 100=\frac{0.72}{2.75+0.72} \times 100$
$=20.8$
40. (C)

Total no. of moles $n=n_{1}+n_{2}$

$$
\begin{aligned}
& \frac{P\left(V_{1}+V_{2}\right)}{R T}=\frac{P_{1} V_{1}}{R T_{1}}+\frac{P_{2} V_{2}}{R T_{2}} \\
& T=\frac{P\left(V_{1}+V_{2}\right) T_{1} T_{2}}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}
\end{aligned}
$$

According to Boyle's law :

$$
p_{1} V_{1}+p_{2} V_{2}=P\left(V_{1}+V_{2}\right)
$$

From eqns. (1) and (2).

$$
T=\frac{\left(p_{1} V_{1}+p_{2} V_{2}\right) T_{1} T_{2}}{\left(p_{1} V_{1} T_{2}+p_{2} V_{2} T_{1}\right)}
$$

41. (D)
42. (A)
43. (D)

Salicylic acid is more acidic than p-hydroxy benzoic acid.
44. (A)
45. (C)

46. (B)

is weakest acid due to greater +1 effect of $-R$.
47. (A)

1 is least stable since charge separation is done and +ve charge is towards -M group. 4 is most stable because nonpolar.
48. (A)

Carbocation stablized by $+M$ effect.
49. (B)

The correct stability order of the following carbocations is IV $>$ II $>$ III $>$ I

Stability of carbocation depend upon conjugation > Hyperconjugation
50. (D)
(D) is not havig $\alpha-\mathrm{H}$.
51. (B)
$\mathrm{NaOH} \rightarrow \mathrm{Na}+: \stackrel{\ominus}{\mathrm{O}}-\mathrm{H}$
52. (C)
positive radius $\alpha \frac{1}{+ \text { ve O.S. }}$
(A) $\stackrel{+4}{\mathrm{MnO}_{2}^{-2}}$
(B) ${ }^{+1++7}{ }^{+7} \mathrm{MnO}_{4}^{-8}$
(C) MnO^{+2-2}
(D) $\underset{\substack{\downarrow \\ \mathrm{x}=+3}}{\mathrm{~K}_{3}}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
53. (B)
$19 \mathrm{~K}^{+}=1.34 \dot{\mathrm{~A}}$ (Cationic radius)
$9^{F}=1.34 \dot{A}$ (Anionic radius)
54. (D)

All are iso-electronic species.
55. (D)

A Gives equeous solution [PH < 7]
B Reacts with strong acid and alkalis respectively.
C Gives an aqueous solution which is strongly alkaline
A - Acidic - $\mathrm{P}(\mathrm{OH})_{3}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$

B - Amphoteric - $\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{H}_{3} \mathrm{AlO}_{3}$
C - Basic - NaOH
x = Phousphorous - Non metal
$y=$ Aluminium - Metal
c = Sodium - Metal
56. (A)
(A) Lattic energy depend upon:
(i) Size of cation and anion both
(ii) Product of charges at cation \& anion
(B) $\mathrm{CdCl}_{2}>\mathrm{CaCl}_{2}-$ Both Hydration \& Lattice is high than CaCl_{2} As per (born haber cycle)
(C) $\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$(Hydration energy) so, $\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$ (Solubility in water)
(D) $\mathrm{Be}_{3} \mathrm{~N}_{2}>\mathrm{Mg}_{3} \mathrm{~N}_{2}>\mathrm{Ca}_{3} \mathrm{~N}_{2}$ (Thermal stability)
57. (A)

Lattice α Hardness
(A) $\mathrm{Ti}>\mathrm{ScN}>\mathrm{MgO}>\mathrm{NaF}-$ order of lattic energy
(B) $\mathrm{NaCl}<\mathrm{CsCl}-$ Co-ordinate no. $\mathrm{NaCl}=6$

$$
\mathrm{CsCl}=8
$$

(C) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}-$ Melting point
58. (B)
$\mathrm{Cs}^{+} \mathrm{I}_{3}^{-}$(large cation stabilises by large anion)
59. (D)

$$
\underset{2 S^{+}}{\mathrm{Li}}+\mathrm{e}^{-} \xrightarrow{\mathrm{Ea}} \underset{2 \mathrm{~S}^{2}}{\mathrm{Li}^{-}} \text {exothermic }
$$

60. (C)
(I) $\mathrm{HClO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HNO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}$
(II) $\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}>\mathrm{HIO}_{3}$

MATHEMATICS

61. (C)

if (a, sina) lie inside the tringle, then $a \in(0, \pi)$
62. (D)
$f(-x)=f(x)$
An even function hence neither one-one nor onto
63. (C)
$g(x)=a x+b$
$g(1)=2$
$\Rightarrow \quad a+b=2$
$g(3)=0$
$\Rightarrow \quad 2 \mathrm{a}=-2$
$a=-1$
b $=3$
$g(x)=-x+3$
$\cot \left[\cos ^{-1}[|\sin x|+|\cos x|]-\sin ^{-1}[|\sin x|+|\cos x|]\right]$
$|\sin x|+|\cos x| \in[1, \sqrt{2}]$
$\Rightarrow \cot \left[\cos ^{-1} 1-\sin ^{-1} 1\right]=0=\mathrm{g}(3)$
64. (B)
$4 m^{3}-3 a m^{2}-8 a^{2} m+8=0$
$\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=-2$

$\Rightarrow \quad \mathrm{m}_{3}=2 \quad\left(\because \mathrm{~m}_{1} \mathrm{~m}_{2}=-1\right)$
65. (A)

Image of $(1,4)$ about the line $y=x$ is $(4,1) \Rightarrow P^{\prime}(4,1) Q(4,5)$ and $R(m, m)$ are collinear.
$\Rightarrow \mathrm{m}=4$
66. (A)
$1-3 x \geq 0$
$x \leq \frac{1}{3}$
And
$-x^{2}+x+6 \geq 0$
$x^{2}-x-6 \leq 0$
$x^{2}-3 x+2 x-6 \leq 0$
$(x-3)(x+2) \leq 0$
$x \in[-2,3]$
The answer will be $\left[-2, \frac{1}{3}\right]$
67. (C)

Given equation $\sec ^{2}(a+2) x+a^{2}-1=0$
$\Rightarrow \tan ^{2}(\mathrm{a}+2) \mathrm{x}+\mathrm{a}^{2}=0 \Rightarrow \tan ^{2}(\mathrm{a}+2) \mathrm{x}=0$ and $\mathrm{a}=0$
$\Rightarrow \tan ^{2} 2 \mathrm{x}=0 \quad \Rightarrow \tan ^{2} 2 \mathrm{x}=0 \quad \Rightarrow \mathrm{x}=0, \frac{\pi}{2}, \frac{\pi}{2}$
$\therefore \quad(0,0),(0, \pi / 2),(0,-\pi / 2)$ are ordered pairs satisfying the equation.
68. (D)
$f(x)=\log _{\sqrt{2}}\left(2-\log _{2}\left(16 \sin ^{2} x+1\right)\right)$
$1 \leq 16 \sin ^{2} x+1 \leq 17$
$\therefore \quad 0 \leq \log _{2}\left(16 \sin ^{2} x+1\right) \leq \log _{2} 17$
$\therefore \quad 2-\log _{2} 17 \leq 2-\log _{2}\left(16 \sin ^{2} x+1\right) \leq 2$
Now consider
$0<2-\log _{2}\left(16 \sin ^{2} x+1\right) \leq 2$
$\therefore \quad-\infty<\log _{\sqrt{2}}\left[2-\log _{2}\left(16 \sin ^{2} x+1\right)\right] \leq \log _{\sqrt{2}} 2=2$
$\therefore \quad$ the range is $(-\infty, 2]$
69. (B)

$$
\begin{aligned}
& \left(\cot ^{-1} x\right)\left(\frac{\pi}{2}-\cot ^{-1} x\right)+2 \cot ^{-1} x-\frac{\pi}{2} \cot ^{-1} x+3\left(\frac{\pi}{2}-\tan ^{-1} x\right)-6>0 \\
& -\left(\cot ^{-1} x\right)^{2}+5 \cot ^{-1} x-6>0 \\
& \left(\cot ^{-1} x\right)^{2}-5\left(\cot ^{-1} x\right)+6<0 \\
& \left(\cot ^{-1} x-3\right)\left(\cot ^{-1} x-2\right)<0 \\
& 2<\cot ^{-1} x<3 \\
& \cot 3<x<\cot 2 \quad\left(\because \cot ^{-1} x \text { is decreasing }\right)
\end{aligned}
$$

70. (B)
$1+\tan ^{2}\left(\tan ^{-1} 2\right)+1+\cot ^{2}\left(\cot ^{-1} 3\right)=1+2^{2}+1+3^{2}=15$
71. (A)
$\cos ^{-1}(1-x)+m \cos ^{-1} x=\frac{n \pi}{2}$
Domain $\mathrm{x} \in[0,1]$
$\cos ^{-1}(1-\mathrm{x})+\mathrm{m} \cos ^{-1} \mathrm{x}>0 \quad(\because \mathrm{~m}>0)$
There is no solution
72. (D)

$$
f(x)=\frac{\pi}{2}-3 \tan ^{-1} x
$$

$$
g(x)=2 \tan ^{-1} x
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}=-\frac{3}{2}
$$

73. (A)

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 0} \frac{\sin \left(\pi-\pi \sin ^{2}(\tan (\sin x))\right.}{x^{2}} \\
& \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin \left(\pi \sin ^{2}(\tan (\sin x)]\right.}{\pi \sin ^{2}(\tan (\sin x)} \times \pi\left(\frac{\sin (\tan (\sin x)}{x}\right)^{2}=\pi
\end{aligned}
$$

74. (A)
$\operatorname{Lt}_{x \rightarrow \frac{\pi}{2}} x\left[x^{5 c-1}\left(1-\frac{7}{x}+\frac{2}{x^{5}}\right)^{c}-1\right]=\ell$
case $-15 \mathrm{c}-1>0$, then $\ell \rightarrow \infty$
case- II 5c-1<0 then $\ell \rightarrow-\infty$
since limit is finite and non-zero so $5 c-1=0 \Rightarrow c=\frac{1}{5}$
$\therefore \lambda=\operatorname{Lt}_{x \rightarrow \infty} x\left[\left(1+\frac{7}{x}+\frac{2}{x^{5}}\right)^{\frac{1}{5}}-1\right]$
$=\operatorname{Lt}_{x \rightarrow \infty} x\left[1+\left(\frac{1}{5}\right)\left(\frac{7}{x}+\frac{2}{x^{5}}\right)+\ldots \ldots \ldots . .-1\right] \quad$ (by binomial approximation)
$=\frac{7}{5}$
75. (C)

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}\left(\frac{\cos x-1}{x^{n-2}}-\frac{\left(e^{x}-1\right)}{x^{n-2}}\right) \Rightarrow n-2=1: n=3
$$

76. (A)

$$
\operatorname{Lt}_{x \rightarrow \infty}\left[\sqrt{x^{2}-x+1}-(a x+b)\right]=0
$$

so a >0, on rationalizing

$$
\operatorname{Lt}_{x \rightarrow \infty}\left[\frac{\left(x^{2}-x+1-\left[a^{2} x^{2}+b^{2}+(2 a b) x\right]\right.}{\sqrt{x^{2}-x+1}+a x+b}\right]=0
$$

so $1-\mathrm{a}^{2}=0 \quad-1-2 \mathrm{ab}=0$
$a=1$,

$$
\operatorname{Lt}_{\mathrm{x} \rightarrow \infty} \sec ^{2}[\mathrm{k}!\pi(-1 / 2)]=1 \quad=a
$$

77. (C)

$$
\begin{aligned}
& f(x+T)=f(x+2 T)=\ldots \ldots \ldots . .=f(x+n T)=f(x)) \\
& \operatorname{Lt}_{n \rightarrow \infty} \frac{n f(x)(1+2+3+\ldots . .+n)}{\left(f(x)\left(1+2^{2}+3^{2}+\ldots .+n^{2}\right)\right.}=\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{n\left(\frac{n(n+1)}{2}\right)}{\frac{n(n+1)(2 n+1)}{6}}=\frac{3}{2}
\end{aligned}
$$

$78 \quad(C)$

$$
\begin{aligned}
& -265\left[\operatorname{Lt}_{h \rightarrow 0} \frac{h^{2}+3}{\left(\frac{f(1-h)-f(1)}{-h}\right)\left(\frac{\sin 5 h}{h}\right)}\right] \\
& =-265 \times \frac{3}{f^{\prime}(1) .5} \\
& =-\frac{53 \times 3}{f^{\prime}(1)} \\
& =-\frac{53 \times 3}{-53} \quad\left(\because f^{\prime}(1)=-53\right) \\
& =3
\end{aligned}
$$

79. (A)
$\left(x^{2}-a^{2}\right)^{2}\left(x^{2}-b^{2}\right)^{2}=0$ and $\left(y^{2}-a^{2}\right)^{2}=0$
$(x= \pm a$ or $x= \pm b)$ and $y= \pm a$
$\therefore \quad(\mathrm{x}, \mathrm{y})=(\pm \mathrm{a}, \pm \mathrm{a})$ or $(\pm \mathrm{b}, \pm \mathrm{a})$
80. (A)

$$
\frac{1}{2} a b=11 \Rightarrow a b=22
$$

Also $\frac{2}{a}+\frac{3}{b}=1 \Rightarrow 2 b+3 a=a b$
$\Rightarrow 4 b^{2}+9 a^{2}+12 a b=a^{2} b^{2}$
$\therefore \quad 4 b^{2}+9 a^{2}=220$
81. (B)
$P A+P C$ is minimum when P is collinear with A and $C . P B+P D$ is minimum when P is collinear with B\&D.
$\therefore P A+P B+P C+P D$ is minimum when P is the point of intersection of diagonals $\mathrm{AC} \& \mathrm{BD}$ and its minimum value is $A C+B D$
82. (C)

Circumcentre of $\triangle \mathrm{PQR}$ is $(1,2)$.
Straight line through it of slope ' m ' is $y-2=m(x-1)$
intersect axes at $A\left(1-\frac{2}{m}, 0\right)$ and $B(0,2-m)$. Now area of $\triangle O A B$ is

$$
=\frac{1}{2}\left(1-\frac{2}{m}\right)(2-m)=\frac{1}{2}\left(4-m-\frac{4}{m}\right) \geq 4 .
$$

83. (B)
$\mathrm{m}=3$ and $\mathrm{n}=4$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+3<0 \Rightarrow(\mathrm{x}-1)(\mathrm{x}-3)<0 \Rightarrow \mathrm{x} \in(1,3)$
$\Rightarrow x=2$ is only integer solution.
84. (C)

Let perpendicular bisector of $A B$ is $3 x+4 y-20=0$
and perpendicular bisector of $A C$ is $8 x+6 y-65=0$.
Image of A w.r.t. $3 x+4 y-20=0$ is B
and image of A w.r.t. $8 x+6 y-65=0$ is C.
For $B, \quad \frac{x-10}{3}=\frac{y-10}{4}=-2\left(\frac{30+40-20}{25}\right)$
$\Rightarrow \quad B=(-2,-6)$
For $\mathrm{C}, \quad \frac{\mathrm{x}-10}{8}=\frac{\mathrm{y}-10}{6}=-2\left(\frac{80+60-65}{100}\right)$
$\Rightarrow \quad \mathrm{C}=(-2,1)$
Area of $\triangle \mathrm{ABC}=\frac{1}{2}(10+2)(1+6)=42$.

85. (B)
$S_{1}-S_{2}=0 \Rightarrow 5 a x+(c-d) y+a+1=0$
and $5 x+$ by $-a=0$ represents the same line
$\therefore \quad \frac{\mathrm{a}}{1}=\frac{\mathrm{c}-\mathrm{d}}{\mathrm{b}}=\frac{\mathrm{a}+1}{-\mathrm{a}}$
$\Rightarrow a b=c-d$ and $a^{2}+a+1=0$
\Rightarrow no real value of a.
86. (C)

$$
\begin{aligned}
& r=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}=\frac{\sqrt{a^{2}+b^{2}}}{2} \\
& \cos 45^{\circ}=\frac{\sqrt{\left(h-\frac{a}{2}\right)^{2}+\left(k-\frac{b}{2}\right)^{2}}}{\frac{\sqrt{a^{2}+b^{2}}}{2}}
\end{aligned}
$$

87. (A)

Distance 'd' between the centres is $=\sqrt{8^{2}+4^{2}}=4 \sqrt{5}$

$$
\begin{array}{r}
\text { Also } 4 \sqrt{5} \cdot p=8 \cdot 4 \Rightarrow p=\frac{8}{\sqrt{5}} \\
\Rightarrow \text { length of common chord is } \frac{16}{\sqrt{5}}
\end{array}
$$

88. (C)

Radius of circles are $r_{1}, r_{2}, 1$
line $y=x+1$
Perpendicular from $(0,0)=\frac{1}{\sqrt{2}}$
$r_{1}>\frac{1}{\sqrt{2}} \Rightarrow r_{1}=1-2 d>\frac{1}{\sqrt{2}}$
$\Rightarrow \mathrm{d}<\frac{\sqrt{2}-1}{2 \sqrt{2}}$
89. (B)

Area of trapezium $A B C D=\frac{1}{2}(a+3 a)(2 r)=4 \Rightarrow a r=1$
Equation of line $B C$ is $y=-r^{2}\left(x-\frac{3}{r}\right)$

or, $y+r^{2} x-3 r=0$
$\because \quad B C$ is the tangent to the circle

$$
\begin{equation*}
\Rightarrow \frac{\left|r+r^{3}-3 r\right|}{\sqrt{1+r^{4}}}=r \Rightarrow r^{4}+4-4 r^{2}=1+r^{4} \Rightarrow r=\frac{\sqrt{3}}{2} \tag{0,0}
\end{equation*}
$$

$(3 \mathrm{a}, 0) \equiv\left(\frac{3}{\mathrm{r}}, 0\right)^{\mathrm{B}}$
90. (C)

Centre of the circles lies on $x+y=3 a$.
let centres are $(\alpha, 3 a-\alpha)$ and $(\beta, 3 a-\beta)$
$\Rightarrow \alpha, \beta$ be the roots of equation
$(x-a)^{2}+(2 a-x)^{2}=x^{2}$
$\Rightarrow x^{2}-6 a x+5 a^{2}=0$
$\alpha+\beta=6 a, \alpha \beta=5 a^{2}$
$|\alpha-\beta|=4 a$
$\Rightarrow C_{1} C_{2}=$ distance between centres $=4 \sqrt{2} a$

