#### **Duration: 3 Hours.**

Maximum Marks: 360

[Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.]

## INSTRUCTIONS

#### A. General Instructions:

- 1. Attempt ALL the questions. Answers have to be marked on the OMR sheet.
- 2. This question paper contains three Parts: Physics, Chemistry & Mathematics.
- 3. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics.
- 4. Each part has only one section and it contains 30 objective type questions with only one choice correct.
- 5. Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
- 6. Blank Paper, clip boards, log tables, slide rule, calculator, mobile, phones, pagers and electronic devices, in any form, are not allowed.

#### B. Marking Scheme:

7. Each question carries +4 marks for correct answer and -1 mark for wrong answer. In case the question is not attempted, your will be awarded 0 (zero) mark.



Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7 Mentors Eduserv.





Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

- 15. A system consists of two stars of equal masses that revolve in a circular orbit about a centre of mass midway between them. Orbital speed of each star is v & period is T. Find the mass M of each star : (G is gravitational constant) (A)  $\frac{2Gv^3}{\pi T}$  (B)  $\frac{v^3T}{\pi G}$  (C)  $\frac{v^3T}{2\pi G}$  (D)  $\frac{2Tv^3}{\pi G}$ 16. Two particles A and B of mass m each are connected together by a rigid massless rod of length 20 cm. Initially rod is vertical and particle A is given velocity V horizontally, while particle B is at rest. Consider the adjacent figure. Find the minimum value of V (in m/s) for which particle B loose contact with ground immediately after giving velocity V. (Take  $g = 10 \text{ m/s}^2$ ) (A)3 (B) 2 (C) 5 (D) none of these B **17.** In the given graph  $K_{a}$  line is drawn for square root of frequency and atomic number. Then choose the  $K_{_{\beta}}$  line graph in the figure shown. (A)(a) (B) (b) . (C) (C) (D) (d) 18. A neutral particle at rest in a uniform magnetic field, decays into two charged particles of different masses at point P as shown in the figure. The energy released goes to their kinetic energy and particles move in the plane of the paper. Magnetic field is into the plane of paper. Select the diagram which describes path followed by the particles most appropriately. (B) Point of collision (C) (D) Point of collision 19. A uniform rod OAB is bent in L shape to form right angle at A. Length of OA is L and that of AB is  $\frac{L}{2}$  respectively as ( shown in figure. The rod is higed at the end O and is free to rotate in a vertical plane about O. It is set free from rest, when larger section of it is in horizontal position. Maximum (C) angular acceleration of rod is : (A)  $2\sqrt{65}\frac{g}{L}$ (B)  $\frac{\sqrt{65}}{7}\frac{g}{L}$ L/2 (C)  $\frac{8}{71} \frac{g}{1}$ 16 g (D)
  - **20.** A progressive simple harmonic wave is moving in air along the x-axis. The part of this wave at a given point  $x = x_0$  from the source and at a certain instant  $t = t_0$  has the waveform shown below in the displacement (y-t) time graph and velocity (v-t) time graph respectively.



Velocity of the wave has value vo and its angular velocity is (a). Which of the following equations will correctly represent the complete wave at x<sub>0</sub> agreeing with above wave forms ?

(A) 
$$y = -a\left[\cos\left\{\frac{2\pi}{T}(t-t_0) - \frac{\pi}{2}\right\}\right]$$
  
(B)  $y = -a\left[\sin\left\{\frac{2\pi}{T}(t-t_0) + \frac{\pi}{2}\right\}\right]$   
(C)  $y = a\left[\sin\left\{\frac{2\pi}{T}(t-t_0) + \frac{\pi}{2}\right\}\right]$   
(D)  $y = a\left[\cos\left\{\frac{2\pi}{T}(t-t_0) - \frac{\pi}{2}\right\}\right]$ 

**21.** A neutron of energy 1 MeV and mass  $1.6 \times 10^{-27}$  kg passes a proton at such a distance that the angular momentum of neutron relative to proton approximately equals 10<sup>-33</sup> Js. The distance of closest approach neglecting the interaction between particles is

(A) 0.44 mm (B) 0.44 nm (C) 0.44 Å (D) 44 fm

22. The lateral magnifications of the lens with an object located at two different positions u<sub>1</sub> and u<sub>2</sub> are m<sub>1</sub> and m<sub>2</sub> respectively. Then the focal length of the lens is

(A) 
$$f = \sqrt{m_1 m_2} (u_2 - u_1)$$
 (B)  $\frac{u_2 - u_1}{m_2 - m_1}$ 

$$\frac{(u_2 - u_1)}{\sqrt{(m_1) - (m_2)}}$$
 (D)  $\frac{(u_2 - u_1)}{(m_2)^{-1} - (m_1)^{-1}}$ 

23. A long horizontal slit is placed 1 mm above a horizontal plane mirror. The interference between the light coming directly from the slit and that after reflection is seen on a screen 1 m away from the slit. If the mirror reflects only 64% of the light falling on it, the ratio of the maximum to the minimum intensity in the interference pattern observed on the screen is

(A)8:1 (B) 3:1 (C) 81:1 (D) 9 : 1

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7

91

Mentors Eduserv.

24. A given length L of wire carries a current I. The wire can be formed into a circular coil of any number of turns. The maximum value of the torque  $\tau$  that can be developed on the coil when placed in a given magnetic field is

(A) 
$$\tau = \frac{L^2 IB}{2\pi}$$
 (B)  $\tau = \frac{L^2 IB}{4\pi}$  (C)  $\tau = \frac{L^2 IB}{2}$  (D)  $\tau = L^2 IB$ 

25. A series circuit has a resistance of  $60\Omega\,$  and an impedance

of  $135\Omega$ . When the total potential difference is 120 V, the power consumed in the circuit will be

(A) 47.4 W (B) 95 W (C) zero (D) 52.3 W

**26.** The adjoining diagram shows the biasing of an npn transistor in common emitter configuration used in an amplifier. The design of the transistor is such that 98% of the charge carriers passing through the emitter reach the collector. If

base current changes from  $50\,\mu A$  to  $100\,\mu A$ , then the corresponding change in the voltage across the load resistance  $R_L$  wll be.



27. The diagram drawn shows a circuit used for obtaining a

constant voltage across the load resistance  $R_{\rm L}=200\,\Omega$ . The zener diode in the ciruit has breakdown voltage of 10 V. Find the correct range of the supply voltage  $V_{\rm S}$  in which it can fluctuate so that we always get a constant voltage across  $R_{\rm L}$ . The maximum power rating of the zener diode is 5W.



**28.** Number of amplitude modulation broadcast stations that can be accommodated in a 100 KHz bandwidth if the highest frequency modulating a carrier is 5 KHz

29. Two nicols A and B are placed in the path of a beam of unpolarised light. In between these two a third nicol C is placed that its principal section is at an angle of 30° with that of A. The percentage of intensity of incident unpolarized light that emerges from C to B.
(A) 2.8 % (B) 9.4 % (C) 15.3 % (D) 10.2 %

**30.** An iron nail is falling from a height 'h'. If it penetrates through  
a distance 'x' into the sand, the average resistance of the  
sand is :  
(A) 
$$mg\frac{h}{x}$$
 (B)  $mg\left(\frac{h}{x}+1\right)$   
(C)  $mg\frac{x}{h}$  (D) mg

#### PART-B: CHEMISTRY

**31.** At high pressure Van der waal equation can be expressed as P (V-nb) = nRT. If molar volume of gas under this condition is twenty one times of co-volume then compressibility factor is :

(A) 
$$\frac{1}{20}$$
 (B)  $\frac{22}{21}$  (C)  $\frac{21}{20}$  (D)  $\frac{20}{21}$ 

32. The equivalent conductance of CH<sub>3</sub>COOH at concentration

C and at infinite dilution are  $\Lambda_m$  and  $\Lambda_m^{\infty}$  respectively and  $K_a$  is the ionisation constant of CH<sub>3</sub>COOH. The correct relationship is given as :

(A) 
$$\Lambda_{\rm m} = \Lambda_{\rm m}^{\infty} + K_{\rm a} \cdot \frac{\left(\Lambda_{\rm m}^{\infty}\right)^2}{\Lambda_{\rm m}C}$$
 (B)  $\frac{1}{\Lambda_{\rm m}} = \frac{1}{\Lambda_{\rm m}^{\infty}} + \frac{\Lambda_{\rm m}C}{K_{\rm a}\left(\Lambda_{\rm m}^{\infty}\right)^2}$ 

(C) 
$$\frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{\infty}} + \frac{1}{(\Lambda_{m}^{\infty})^{2}}$$
 (D)  $\frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{\infty}} + \frac{\Lambda_{m}C}{K_{a}\Lambda_{m}^{\infty}}$ 

- **33.** A freshly prepared radioactive substance has a half life of 15 min. It emits radiations whose intensity is 32 times the permissible safe value. The minimum time after which it would be possible to work with this sample is :
- (A) 60 min. (B) 75 min (C) 90 min (D) 120 min
   34. 40 mL of 0.05 M solution of sodium sesquicarbonate (Na<sub>2</sub>CO<sub>3</sub>.NaHCO<sub>3</sub>.2H<sub>2</sub>O) is titrated against 0.05 M HCl. When phenolphthalein is used as indicator, X mL HCl is used. In a separate titration of same solution using methyl orange as indicator y mL of HCl is used. Then :

(A) 
$$y - x = 40$$
 (B)  $y = 2 x$  (C)  $y - x = 80$  (D)  $y = x$   
35. If  $W_2g$  of benzoic acid is dissolved in  $W_1g$  of benzene, boiling

point of solution increased by  $\Delta T$ . If it is known that benzoic acid dimerises in benzene to the extent of y% then molar mass of benzoic acid (M<sub>2</sub>) can be obtained from relation (Given that K<sub>b</sub>= molal elevation constant of benzene and benzoic acid is nonvolatile)

(A) 
$$\Delta T = \left[1 + \left(\frac{1}{2} - 1\right)\frac{y}{100}\right] \times K_b \times \frac{W_2 \times M_2}{W_1 \times 1000}$$

(B) 
$$\Delta T = \left[1 + \left(\frac{1}{2} - 1\right)\frac{y}{100}\right]\frac{K_b \times W_2}{M_2 \times W_1} \times 1000$$

(C) 
$$\Delta T = \left[1 - \left(1 - \frac{1}{2}\right)y\right] \times \frac{K_b \times W_2}{M_2 \times W_1} \times 1000$$

D) 
$$\Delta T = K_{b} \times \frac{W_{2} / M_{2}}{W_{1} / 1000}$$

Mentors<sup>®</sup> Eduserv™

(A)1

(

## [4]



Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

Mentors' Eduserv"



Mentors<sup>®</sup> Eduserv<sup>™</sup>

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

**74.** Let  $C_1$  and  $C_2$  be the two curves in the complex plane defind  $\left( \begin{bmatrix} \frac{\sin^{-1}x}{x} \end{bmatrix} + \begin{bmatrix} \frac{2^2\sin^{-1}2x}{x} \end{bmatrix} + \begin{bmatrix} \frac{3^2\sin^{-1}3x}{x} \end{bmatrix} + \\ \dots + \begin{bmatrix} \frac{n^2\sin^{-1}nx}{x} \end{bmatrix} \right) = 225$ respectively as  $z + \overline{z} = 2|z-1|$  and  $\arg(z) = \alpha$ , where 65. If lim  $\alpha \in (0,\pi)$  have exactly one point in common which is denoted as  $P(z_0)$ . If  $P(z_0)$  is rotated about origin through an angle  $2\alpha$ in clockwise direction to become the point  $Q(z_0')$ , then the (where [.] denotes the greatest integer function), then the area bounded by C1 and the line PQ is value of n is (A)2 (B) 3 (C) 4 (D)5 (A)  $\frac{2}{3}$  sq. unit (B)  $\frac{5}{6}$  sq. unit **66.** If the function  $f(x) = |x^2 + (a - 2)|x| - 2a|$  is non-differentiable at five points, then the maximum integral value of  $a^3 + a$  is (A) - 2(B) –4 (C) 8 (D) None of (C) 1 sq. unit (D) 2 sq. unit these 75. Let f(n) denotes the number of non-negative integral **67.** Let  $f(x) = ax^3 + bx^2 + cx + 5$ . If  $|f(x)| \le |e^x - e^2| \forall x \ge 0$  and if solutions of the equation  $x_1 + x_2 + x_3 + x_4 + x_5 = n$ . If maximum value of |12a + 4b + c| is P then greatest integer less than P is  $\sum_{k=1}^{m} k f(11-k) =^{p} C_{q} \text{ where } p > 10, q > 6 \text{ and } p,q \in N \text{ , then}$ (A)4 (C) 6 (B) 5 (D)7 68. Given two circles (p + q) is  $x^{2} + y^{2} + 3\sqrt{2}(x + y) = 0$  and  $x^{2} + y^{2} + 5\sqrt{2}(x + y) = 0$ . Let (A)23 (D) 26 (B) 24 (C) 25 the radius of the third circle, which touches the two given 76. If  $_{X\,\in\,R}$  & a > 0 , then the maximum value of circles and to their common diameter, be  $\frac{2\lambda-1}{\lambda}$ . The value  $y = 2(a - x)(x + \sqrt{x^2 + b^2})$  is of  $\lambda$  is (A)  $a^2 - 2b^2$  (B)  $a^2 - b^2$  (C)  $a^2 + b^2$  (D)  $a^2 + 2b^2$ (B) 7 (C) 8 77. The slope of the line belonging to the family of lines (A)5 (D) 10  $(1+\lambda)x+(\lambda-1)y+2(1-\lambda)=0$  on which  $x^2 = 4y - 4$  makes **69.** If  $x^5 = 1$ ,  $(x \neq 1)$ , then  $\frac{x}{1+x^2} + \frac{x^2}{1+x^4} + \frac{x^3}{1+x} + \frac{x^4}{1+x^3}$  equals shortest intercept is (A)0 (B) 1/2 (C) 1 (D) 2 (A)1 (B) 2 (D) None of these (C) 3 78. Let  $\vec{a}, \vec{b}, \vec{c}$  be coplanar unit vectors such that 70. If  $\vec{a}$  and  $\vec{b}$  are any two unit vectors, then the number of  $\vec{b} \cdot \vec{c} = \cos \alpha$ ,  $\vec{c} \cdot \vec{a} = \cos \beta$ ,  $\vec{a} \cdot \vec{b} = \cos \gamma$ , then the value of integers in the range of  $2|\vec{a}-\vec{b}| + \frac{3}{2}|\vec{a}+\vec{b}|$  is  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2\cos \alpha \cos \beta \cos \gamma$  is (A)-1 (B) 0 (C) 1 (D) 2 (A)3 (B) 5 (C) 9 (D) 11 71. A fair coin is tossed repeatedly, the probability of obtaining **79.** If  $(10^{2017} + 5)^2 = 225\lambda$  and the sum of digits in  $\lambda$  is N then five consecutive heads before two consecutive tails is the number of even digits in N is (A)  $\frac{1}{17}$  (B)  $\frac{1}{34}$  (C)  $\frac{2}{17}$  (D)  $\frac{3}{34}$ (A)0 (B) 1 (C) 2 (D) None of these **80.** If in a rectangular hyperbola  $xy = c^2$ , the locus of the middle **72.** If  $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ , then  $A^2 + A - 5I$  is points of chords of constant length 2*l* is  $(x^2 + y^2) (x y - c^2) =$  $\ell^{\lambda}$  xy, then the value of  $\lambda$  is (A) A<sup>-1</sup> (B) 3A<sup>-1</sup> (A)-1 (B) 0 (C) 1 (D)2 **81.** A function  $f: R \rightarrow R$  satisfies the equation (C) 5A<sup>-1</sup> (D) None of these  $f(x) \cdot f(y) - f(xy) = x + y \ \forall x, y \in \mathbb{R}$  and f(1) > 0, then **73.**  $\int \left( (e-1)\sqrt{\ln(1+(e-1)x)} + e^{x^2} \right) dx \text{ equals}$  $f(x) \cdot f^{-1}(x)$  is (A)0 (B) 1 (C) e (D) e<sup>2</sup>  $(A) x^2 - 6$ (B)  $x^2 - 4$ (C) x<sup>2</sup> - 1 (D) None of these

Mentors<sup>®</sup> Eduserv<sup>®</sup>

| [8]      |                                                                                                                                               |                   |                    |                       |               | SAMPLE     | PAPER F  | OR JEE             | MAIN 2                                                                                                                            | 018                      |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------------------|---------------|------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 82.      | lf n                                                                                                                                          | is                | а                  | natural               | num           | ıber,      | then     | 86.                | lf f be a                                                                                                                         | polynomi                 | al fu            | unction                 | satisfy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ying               |
|          | $n^n - C_1$                                                                                                                                   | $(n-1)^{n} +^{n}$ | C <sub>2</sub> (n- | $(-2)^{n} - C_{3}(r)$ | $(1-3)^{n} +$ | is         |          |                    | $f(x^2+x+3)+2$                                                                                                                    | $df(x^2-3x+5)$           | $= 6x^2 - 1$     | 0x+17 ∀                 | $x \in R$ , the second se | nen                |
|          | (A) 0 (B) n! (C) $(n!)^n$ (D) $(n^n)!$                                                                                                        |                   |                    |                       |               |            |          |                    | (A)f is a decre                                                                                                                   | asing functio            | n                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          | The value of $\lim_{n \to \infty} \frac{1}{n^4} \sum_{r=1}^n r^2 (2r+1)$ is                                                                   |                   |                    |                       |               |            |          |                    | <ul> <li>(B) f(x) = 0 has a root in (0, 2)</li> <li>(C) f(x) is an odd function</li> <li>(D) no such polynomial exists</li> </ul> |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 83.      |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          | 07                 | (E) no such por                                                                                                                   | $2^{2x} + (2 - 1)^{2x}$  | <sup>1</sup> 1 0 | has root                | o of onno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | noito              |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    | signs, then the number of possible values of [a] is (where [                                                                      |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 84.      | The equation of the largest circle with centre (1,0) that can be inscribed in the ellipse $x^2 + 4v^2 = 16$ . is                              |                   |                    |                       |               |            |          |                    | .] denotes grea                                                                                                                   | atest integer            | function)        |                         | . <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          | 00                 | (A) 1 (                                                                                                                           | (B) 2<br>ivolv primo pr  | (C) 4            | (D                      | ) infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onte               |
|          | (A) $(x-1)^2 + y^2 = \frac{1}{3}$ (B) $(x-1)^2 + y^2 = \frac{22}{3}$                                                                          |                   |                    |                       |               |            |          | 00.                | of x <sup>2</sup> and x <sup>3</sup> in th                                                                                        | e expansion of           | of (mx + n       | ) <sup>2000</sup> are e | qual, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | en m               |
|          | (C) $(x - 1)^2 + y^2 - 11$ (D) None of these                                                                                                  |                   |                    |                       |               |            |          |                    | + n equals                                                                                                                        | (B) 667                  | (C) 676          | D)                      | ) 677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          | 89                 | If each observa                                                                                                                   | tion of a raw            | data who         | se varia                | nce is -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 is               |
|          | Let $f(x) = \begin{cases} e^x , x < 0 \\ q , x = 0 \\ \lambda x + p , x > 0 \end{cases}$ is differentiable $\forall x \in \mathbb{R}$ , where |                   |                    |                       |               |            |          |                    | multiplied by $\lambda$                                                                                                           | , then the va            | riance of        | the new s               | set is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 13               |
| 85.      |                                                                                                                                               |                   |                    |                       |               |            |          |                    | $(A) \sigma^2$                                                                                                                    | (B) $\lambda^2 \sigma^2$ | (C) 3 I          | σ <sup>2</sup> (D       | $) \lambda^2 + \sigma^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|          | [] and {} denote greatest integer & fractional part functions                                                                                 |                   |                    |                       |               |            |          | 90.                | The number of i                                                                                                                   | ntegral value            | s of n for       | which n <sup>2</sup>    | + 19n + 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92 is              |
|          | respectively, then the value of $p+q+\lambda$ is                                                                                              |                   |                    |                       |               |            |          |                    | a perfect squar                                                                                                                   | e is                     |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          | (A)0                                                                                                                                          | (B)               | 1                  | (C) 2                 | 2             | (D) 3      |          |                    | (A)0 (                                                                                                                            | (B) 2                    | (C) 4            | (D                      | )9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               | A          | NSWE     | ER-I               | <u>KEY</u>                                                                                                                        |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               | P          | PHY      | SICS               |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 1.       | (A)                                                                                                                                           |                   | 2.                 | (D)                   | 3.            | (D)        | 4        | 4. (I              | B) 5.                                                                                                                             | (C)                      | 6.               | (A)                     | 7. (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>B)</b>          |
| 8.<br>15 | (A)<br>(D)                                                                                                                                    |                   | 9.<br>16           | (B)<br>(B)            | 10.<br>17     | (A)<br>(Δ) |          | 11. ('<br>18 ('    | C) 12<br>B) 19                                                                                                                    | . (A)<br>(B)             | 13.<br>20        | (A)<br>(C)              | 14. (A<br>21 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N)<br>N            |
| 22.      | (D)                                                                                                                                           |                   | 23.                | (C)                   | 24.           | (A)<br>(B) |          | 25. (J             | A) 26                                                                                                                             | . (C)                    | 27.              | (B)                     | 28. (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,<br>,)           |
| 29.      | (B)                                                                                                                                           |                   | 30.                | (B)                   |               | ( )        |          | - (                | 1                                                                                                                                 | ( )                      |                  | ( )                     | - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                  |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               | PA         | RT-B : C | HEM                | ISTRY                                                                                                                             |                          |                  | <i></i>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 31.      | (C)<br>(P)                                                                                                                                    |                   | 32.<br>20          | (B)<br>(A)            | 33.           | (B)<br>(C) |          | 34. ( <sup>.</sup> | C) 35                                                                                                                             | ы. (В)<br>(В)            | 36.<br>42        | (A)<br>(D)              | 37. (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;)<br>>\           |
| 45.      | (C)                                                                                                                                           |                   |                    | (A)<br>(D)            | 40.<br>47.    | (C)<br>(C) |          | +1. (1<br>48. (1   | D) 42<br>D) 49                                                                                                                    | . (В)<br>). (С)          | 43.<br>50.       | (D)<br>(A)              | 51. (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>&gt;)</i><br>)) |
| 52.      | (B)                                                                                                                                           |                   | 53.                | (E)                   | 54.           | (B)        | !        | 55. (J             | A) 56                                                                                                                             | 5. (C)                   | 57.              | (C)                     | 58. (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3)                 |
| 59.      | (A)                                                                                                                                           |                   | 60.                | (B)                   |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 61       |                                                                                                                                               |                   | 67                 | (A)                   | 63            | PAR        | AM: C-I  |                    | VIATICS                                                                                                                           | ( <b>ח</b> )             | 66               | <b>(D)</b>              | 67 (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••                 |
| 68       | (C)<br>(C)                                                                                                                                    |                   | ₀∠.<br>69          | (A)<br>(B)            | ნა.<br>70     | (C)<br>(A) | •<br>-   | 54. ( <br>71, (    | נס <sub>ו</sub> ים<br>D) 72                                                                                                       | . (D)<br>. (C)           | 00.<br>73        | (C)                     | οι. (L<br>74. (Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ')<br>\)           |
| 75.      | (D)                                                                                                                                           |                   | 76.                | (C)                   | 77.           | (A)        | -        | 78. (              | _, 72<br>C) 79                                                                                                                    | . (C)                    | 80.              | (D)                     | 81. (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,<br>)             |
| 82.      | (B)                                                                                                                                           |                   | 83.                | (C)                   | 84.           | (A)        | 8        | 35. (              | D) 86                                                                                                                             | . (B)                    | 87.              | (A)                     | 88. (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B)                 |
| 89.      | (B)                                                                                                                                           |                   | 90.                | (B)                   |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| L        |                                                                                                                                               |                   |                    |                       |               |            |          |                    |                                                                                                                                   |                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |

. Mentors<sup>®</sup> Eduserv<sup>™</sup>

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7