SOLUTIONS

PROGRESS TEST-6

CD-1801 (α), CD-1801 (β)
CDK-1801 \& CDS-1801 (JEE ADVANCED PATTERN)

Test Date: 07-10-2017
Mentors Eduserv"'

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1 st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800| 7544015993/4/6/7

PHYSICS

1. (C)
2. $\quad \vec{B}$ due to $A O B$ and $C O D$ will be perpendicular to each other at point P
$B^{2}=B_{1}{ }^{2}+B_{2}{ }^{2}$
$B=\frac{\mu_{0}}{2 \pi a}\left(I_{1}^{2}+I_{2}^{2}\right)^{1 / 2}$
$\therefore \quad(\mathrm{C})$
3. No current is enclosed in the circle, so from Ampere's circuital law, the magnetic induction at any point inside the infinitely long straight thin walled tube (cylindrical) is zero.

$\therefore \quad$ (B)
4. Since the magnetic field is constant with time and space and exists everywhere, there is no change in magnetic flux when the loop is moved in it. Hence no current is induced.
\therefore (D)
5. $T=\frac{2 \pi m}{q B}, \frac{T_{\alpha}}{T_{p}}=\frac{m_{\alpha}}{m_{p}} \cdot \frac{q_{p}}{q_{\alpha}}=2$

$$
\therefore \quad \text { (B) }
$$

6. Magnitude of torque is given by $|\vec{\tau}|=M B \sin \theta$

Here, $M=N i A=(1)(1.0)(\pi)(0.2)^{2}=(0.04 \pi) \mathrm{A}-\mathrm{m}^{2}$
and $\theta=$ angle between \vec{M} and $\vec{B}=90^{\circ}$
$\therefore \quad|\vec{\tau}|=(0.04 \pi)(2) \sin 90^{\circ}=0.08 \pi \mathrm{~N}-\mathrm{m}$.
$\therefore \quad(B)$
7. The magnetic induction of the solenoid is directed along its axis. Therefore, the Lorentz force acting on the electron at any instant of time will lie in the plane perpendicular to the solenoid axis. Since the electron velocity at the initial moment is directed at right angles to the solenoid axis, the electron trajectory will lie in the plane perpendicular

to the solenoid axis. The Lorentz force can be found from the formula $F=e v B$.

The trajectory of the electron in the solenoid is an arc of the circle whose radius can be deter mined from the relation $e v B=m v^{2} / r$, whence

$$
r=\frac{m v}{e B}
$$

The trajectory of the electron in shown in figure, where O_{1} is the centre of the arc $A C$ described by the electron, v^{\prime} is the velocity at which the electron leaves the solenoid. The segments $O A$ and $O C$ are tangents to the electron trajectory at points A and C. The angle between v and v^{\prime} is obviously $\varphi=\angle A O_{1} C$ since $\angle O A O_{1}=\angle O C O_{1}$.

In order to find φ, let us consider the right triangle $O A O_{1}$; side $O A=R$ and side $A O_{1}=r$.
Therefore, $\tan (\varphi / 2)=R / r=e B R /(m v)$.

Therefore,

$$
\varphi=2 \tan ^{-1}\left(\frac{e B R}{m v}\right)
$$

Obviously, the magnitude of the velocity remains unchanged over the entire trajectory since the Lorentz force is perpendicular to the velocity at any instant. Therefore, the transit time of electron in the solenoid can be determined from the relation

$$
t=\frac{r \varphi}{v}=\frac{m \varphi}{e B}=\frac{2 m}{e B} \tan ^{-1}\left(\frac{e B R}{m v}\right) .
$$

\therefore (B)
8. $\alpha=\frac{|\vec{\tau}|}{I}=\frac{i \pi r^{2} B_{0} \sqrt{2}}{\frac{1}{2} m r^{2}}$
$\alpha=\frac{2 \sqrt{2} \pi B_{0} i}{m}$
Axis of rotation of the loop will be along unit vector $\frac{(\hat{j}-\hat{i})}{\sqrt{2}}$
the moment of inertia of ring about that axis $=\frac{1}{2} m R^{2}$
\therefore (B)
9. $B=\frac{\mu_{0} I}{4 r}+\frac{\mu_{0} I}{4 \pi r}=\frac{\mu_{0} I}{4 \pi r}(1+\pi)$
\therefore (A)
10. Potential of centre of sphere $=\frac{K q}{r}+V_{i}=\frac{K q}{r}$
where $V_{i}=$ potential due to induced charge at centre $=0\left[\therefore \Sigma q_{i}=0\right.$ and all induced charges are equidistance from centre]
\therefore potential at point $P=\frac{K q}{r}=\frac{K q}{r_{1}}+V_{i}$ (For conductor all points are equipotential)
$\therefore \quad V_{i}=K\left(\frac{q}{r}-\frac{q}{r_{1}}\right)$
$\therefore \quad(\mathrm{C})$
11. $Q=C V=5 \times 10^{-6} \times 0.942=4.71 \times 10^{-6} \mathrm{C}$

$$
\therefore \quad \text { (A) }
$$

12. $E=\frac{Q^{2}}{2 C}=\frac{(4.71)^{2} \times\left(10^{-6}\right)^{2}}{2 \times 10 \times 10^{-6}}=11.1 \times 10^{-7} \mathrm{~J}$
\therefore
(B)
13. (D)
14. (A)

$$
\phi=\mathrm{BA}
$$

$\mathrm{E}=\mathrm{A} \frac{\mathrm{dB}}{\mathrm{dt}}=\pi .2 \mathrm{t}$
$i=\frac{E}{R}=\frac{2 \pi t}{2}=\pi t$
$\tau=\vec{\mu} \times \vec{B}=\pi^{2} t \hat{j} \times\left(\hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}}\right)$
$=\pi^{2} \mathrm{t}=\pi \mathrm{g}$
$\mathrm{t}=\frac{\mathrm{g}}{\pi}=\frac{10}{\pi}$
15. (B)
$\mathrm{i}^{2}=\frac{\mathrm{P}}{\mathrm{R}_{2}}$
$i=2 \times 10^{-2} \mathrm{~A}$
$P_{R_{1}}=i^{2} R_{1}=\left(2.0 \times 10^{-2}\right)^{2} \times 4 \times 10^{3}=1.6 \mathrm{~W}$
16. (C)
$\mathrm{Q}_{\mathrm{C}_{1}}=\mathrm{V}_{\mathrm{R}_{1}} \times \mathrm{C}_{1}=80 \times 3 \times 10^{-6}=240 \mu \mathrm{C}$
$\mathrm{Q}_{\mathrm{C}_{2}}=\mathrm{V}_{\mathrm{R}_{2}} \times \mathrm{C}_{2}=140 \times 6 \times 10^{-6}=840 \mu \mathrm{C}$
17. (A)

$$
I=\frac{2+3-5+4+6}{2+3+5+4+6}=\frac{1}{2} \mathrm{~A}
$$

$V_{D}=2-\frac{1}{2} \times 2=1 \mathrm{~V}$
$V_{C}=V_{D}+3-\frac{1}{2} \times 3=2.5 \mathrm{~V}$
$V_{B}=V_{C}-5-\frac{1}{2} \times 5=-5 \mathrm{~V}$
$V_{A}=V_{B}+4-\frac{1}{2} \times 4=-3 V$
18. (D)

Let the radius of circle in which particle moves is R. In this magnitude of region electric field is $E=\frac{R}{2}\left(\frac{d B}{d t}\right)$ as $q E=m \frac{d V}{d t}$
$\Rightarrow \frac{q R}{2}\left(\frac{d B}{d t}\right)=m \frac{d V}{d t}$
also $R=\frac{m V}{B q}$
$\Rightarrow \frac{d V}{V}=\frac{1}{2} \frac{d B}{B}$
as $R=\frac{m V}{B q}, \frac{d V}{V}=\frac{d q}{q}+\frac{d B}{B}, \frac{d q}{q}=-\frac{1}{2} \frac{d B}{B}$
19. (D)
20. (A)
(A) Refractive index of the prism is the minimum value required for ray (1) to undergo total internal reflection at face AC. Ray (1) falls on face $A C$ at an angle of incidence 30°
$\therefore 30^{\circ}>i_{C}$

$$
\sin 30^{\circ}>\sin i_{C}
$$

$\therefore \quad \mu>2$
Minimum value of μ can be taken as 2 .
(B) For ray 2, refractive angle of prism is 30°. Apply Snell's law
for refraction at face $A B$.
$1 \sin i=\mu \sin r$
$i=90^{\circ}$
(C) Using the relation $i_{1}+i_{2}=A+\delta$ for ray 2 .
$90^{\circ}+0^{\circ}=30^{\circ}+\delta$
$\delta=60^{\circ}$
(D) $\mu=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin \frac{A}{2}} \Rightarrow \delta m=120^{\circ}$

21. (A)
$\frac{P_{0}-P_{s}}{P_{s}}=\frac{n}{N}$
or, $\frac{P_{0}-P_{S}}{P_{S}}=\frac{w_{B}}{M_{B}} \times \frac{M_{A}}{w_{A}}=\frac{185-183}{183}=\frac{1.2}{M_{B}} \times \frac{58}{100}$

$$
\begin{aligned}
& \frac{185-183}{183}=\frac{1.2 / M_{B}}{100 / 58} \\
& M_{B}=64 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

22. (A)
$P_{T}=P_{A}^{0}+\left(P_{B}^{0}-P_{A}^{0}\right) x_{B}$
$120=150+(50-150) x_{B}$
$-30=-100 x_{B}$
$x_{B}=\frac{3}{10}$
$x_{A}=\frac{7}{10}$
$y_{A}=\frac{P_{A}^{0} x_{A}}{P_{T}}=\frac{150 x}{120 x} \frac{7}{10}$
$y_{B}=\frac{P_{B}^{0} x_{B}}{P_{T}}=\frac{50}{120} \times \frac{3}{10}$
$\frac{y_{A}}{y_{B}}=\frac{150 \times 7}{50 \times 3}=\frac{7}{1}$
23. (B)
$k t_{1 / 2}=2.303 \log _{10} \frac{100}{50}$
$k t_{99 \%}=2.303 \log _{10} \frac{100}{1}$
(ii) \div (i)
$\frac{t_{99 \%}}{t_{1 / 2}}=\frac{\log _{10}^{10^{2}}}{\log _{10}^{2}}=\frac{2}{\log _{10}^{2}}$
or, $\quad t_{99 \%}=\frac{2}{0.301} \times t_{1 / 2}=\frac{2}{0.301} \times 6.93=46.06 \mathrm{~min}$.
or, $k=\frac{0.693}{t_{y_{2}}}=\frac{0.693}{6.93}=0.1$
also, $\mathrm{kt}_{99 \%}=2.303 \log _{10} \frac{100}{10}$
or $0.10 t_{99 \%}=2.303 \times 2$
or, $\mathrm{t}_{99 \%}=\frac{4.606}{0.1}=46.06 \mathrm{~min}$.
24. (C)
25. (B)

Its conjugate base is very much stablised due to locking of phenyl ring.
26. (B)
$\mathrm{HClO}_{4}=\mathrm{H}^{+}+\mathrm{ClO}_{4}^{\ominus}$

27. (D)

Half chair is less stable due to high torsional strain in the molecule.
28. (B)
29. (C)
30. (A)
31. (C)

$$
\begin{aligned}
& Y_{A} P_{T}=P_{A}^{0} \times x_{A} \\
& Y_{A}=\frac{P_{A}^{0} x_{A}}{P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}} \\
& Y_{A}-x_{A}=\frac{P_{A}^{0} x_{A}}{P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}}-x_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(Y_{A}-x_{A}\right)}{d x_{A}}=\frac{\left(P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}\right) P_{A}^{0}-P_{A}^{0} x_{A}\left[P_{A}^{0}-P_{B}^{0}\right)}{\left[P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}\right]^{2}}-1 \\
& 0=\frac{P_{B}^{0} \cdot P_{A}^{0} \cdot}{\left[P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}\right]^{2}}-1 \\
& P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}=\sqrt{P_{A}^{0} \cdot P_{B}^{0}} \\
& x_{A}=\frac{\sqrt{P_{A}^{0} \cdot P_{B}^{0}}-P_{B}^{0}}{P_{A}^{0}-P_{B}^{0}}
\end{aligned}
$$

32. (D)

$$
P_{T}=P_{B}^{0}+\left(P_{A}^{0}-P_{B}^{0}\right) x_{A}=\sqrt{P_{A}^{0} P_{B}^{0}}
$$

33. (C)

more stable due to intramolecular H -bonding

Intramolecular H-bonding
34. (D)

Two larger substituent CH_{3} group ups are presental 60° angle so this is ganch form
35. (B)
36. (B)
37. (A)
(A)-(Q); (B)-(P); (C)-(S); (D)-(R)
38. (B)
$A \rightarrow(R), B \rightarrow(Q), C \rightarrow(S), D \rightarrow(P)$
(A)

both are fantomers
(B) One methyl is above the plane other is below the plane
(C) Due to unequal distribution of alkyl group around N
39. (C)
$(\mathrm{A}) \rightarrow(\mathrm{S}) ;(\mathrm{B}) \rightarrow(\mathrm{P}) ;(\mathrm{C}) \rightarrow(\mathrm{Q}) ;(\mathrm{D}) \rightarrow(\mathrm{R})$
(A) Both Cl atoms are present at 180° angle so it is trans staggered
(B) Two methyl groups are present at 60° so gauch
(C)

(D)

40. (B)
$(A)-(P) ;(B)-(Q) ;(C)$ - $(P) ;(D)$ - (S)

MATHEMATICS

41. (D)

Required area

$$
\begin{aligned}
& =2\left\{\frac{1}{4} \times \pi \times 1^{2}-\frac{1}{2} \times 1 \times 1\right\} \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

42. (B)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A})=\mathrm{n}-1 \\
& \mathrm{n}(\mathrm{~A} \times \mathrm{A})=(\mathrm{n}-1)^{2}
\end{aligned}
$$

Number of relation on $\mathrm{A}=2^{(\mathrm{n}-1)^{2}}$
43. (C)

$$
\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t^{2} \cdot f(t) d t
$$

differentiating, $\quad f(x)=1-x^{2} \cdot f(x)$

$$
\begin{gathered}
\left(1+x^{2}\right) f(x)=1 \Rightarrow \quad f(x)=\frac{1}{1+x^{2}} \\
\left.\therefore \quad \int_{-1}^{1} \frac{1}{1+x^{2}} d x=2 \int_{0}^{1} \frac{d x}{1+x^{2}}=2 \tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{2} \text { Ans }
\end{gathered}
$$

44. (B)

$$
I=\int \frac{2 x+1}{\left(x^{2}+4 x+1\right)^{3 / 2}} d x=\int \frac{2 x+1}{x^{3}\left(1+\frac{4}{x}+\frac{1}{x^{2}}\right)^{3 / 2}} d x=\int \frac{2 x^{-2}+x^{-3}}{\left(1+\frac{4}{x}+\frac{1}{x^{2}}\right)^{3 / 2}} d x
$$

now put $\frac{1}{\mathrm{x}^{2}}+\frac{4}{\mathrm{x}}+1=\mathrm{t}^{2}$ then $\mathrm{I}=-\int \frac{\mathrm{dt}}{\mathrm{t}^{2}}=\frac{1}{\mathrm{t}}+\mathrm{C}$
45. (A)

$$
\begin{align*}
& \left.\frac{t^{3}}{3}\right|_{0} ^{f(x)}=x \cos \pi x \quad \Rightarrow[f(x)]^{3}=3 x \cos \pi x \tag{1}\\
& {[f(9)]^{3}=-27}
\end{align*} \quad \Rightarrow f(9)=-38
$$

also differentiating $\int_{0}^{f(x)} t^{2} d t=x \cos \pi x$

$$
[f(x)]^{2} \cdot f^{\prime}(x)=\cos \pi x-x \pi \sin \pi x
$$

$\therefore \quad[f(9)]^{2} \cdot f^{\prime}(9)=-1$
$\Rightarrow \mathrm{f}^{\prime}(9)=-\frac{1}{(\mathrm{f}(9))^{2}}=-\frac{1}{9} \quad \mathrm{f}^{\prime}(9)=-\frac{1}{9} \Rightarrow(\mathrm{~A})$
46. (D)
$2 y \cdot \frac{d y}{d x}=4 a ; \frac{d y}{d x}=\frac{2 a}{y}$
$\frac{d y}{d x}=-\frac{1}{2 a} e^{-\frac{x}{2 a}}=-\frac{y}{2 a}$
47. (A)

$$
\left[\frac{x}{99}\right]=\left[\frac{x}{101}\right]=0 \quad \text { iff } x \in\{1,2, \ldots, 98\} .98 \text { such numbers }
$$

$\left[\frac{x}{99}\right]=\left[\frac{x}{101}\right]=1$ iff $x \in\{101,102, \ldots, 197\} .97$ such numbers
In general; If
$\left[\frac{\mathrm{x}}{99}\right]=\left[\frac{\mathrm{x}}{101}\right]=\mathrm{k}$ where $\mathrm{k} \geq 1$, then $\mathrm{x} \in\{101 \mathrm{k}, 101 \mathrm{k}+1, \ldots, 99(\mathrm{k}+1)-1\}$
(99-2k) such numbers.
$\therefore \quad 99(k+1)-1 \geq 101 \mathrm{k}$
$98 \geq 2 k, k \leq 49$
so, $98+\sum_{k=1}^{49}(99-2 k)$
$=98+2401=2499$
48. (D)

$$
\begin{aligned}
& 4=t^{2} ; 2=t^{3}-3 t \\
& t=-2,2 \Rightarrow t=2 \\
& \frac{d y}{d x}=\frac{3 t^{2}-3}{2 t}=\frac{9}{4}
\end{aligned}
$$

49. (A)
$\because \sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x)$
or $|\cos x|=\sin ^{-1}(\sin x)$
If $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, then $\cos x=x$
\therefore one solution

If $\frac{\pi}{2}<x \leq \pi$, then $-\cos x=\pi-x$
\therefore one solution

If $-\pi \leq x<-\frac{\pi}{2}$, then $-\cos x=-x-\pi$ therefore no solution
\therefore Total no. of solutions $=2$
50. (C)

Requred area $=\frac{3}{\sqrt{2}} \times \frac{3}{\sqrt{2}}=\frac{9}{2}$
51. (C)
$f(x)+f^{\prime \prime \prime}(3)=x^{3}+x^{2} f^{\prime}(1)+x f "(2)$
differetiating w.r.t x
$f^{\prime}(x)=3 x^{2}+2 x f '(1)+f^{\prime \prime}(2)$
$f^{\prime \prime}(x)=6 x+2 f^{\prime}(1)$
f "'(x) $=6$
Putting $x=1$ in (i) and $x=2$ in (ii) on solving we get,
$f^{\prime}(1)=-5 \& f^{\prime \prime}(2)=2, f(x)=x^{3}-5 x^{2}+2 x-6$
52. (B)
$f(x)=x^{3}-5 x^{2}+2 x-6$
$f^{\prime}(x)=3 x^{2}-10 x+2$ two real and distinct root
53. (D)

For continous at $x=0 \quad \Rightarrow r=0$ and at $x=-2 \Rightarrow 2 p-q=-4$
Straight line L is $y=4 x-1$ touches $f(x)$ at $x=-3,-1 \& 1$
54. (C)
$f(x)$ is differentiable if $r=0,4 p-2 q+r=-8$
$q=2$ and $4 p-q+6=0$
$\Rightarrow r=0, q=2, p=-1$
55. (A)
$G(x)= \begin{cases}\sqrt{4-x^{2}}, & -2 \leq x<0 \\ |x-2|, & 0 \leq x \leq 2\end{cases}$

Area $=\frac{\pi r^{2}}{4}=\frac{\pi \times 2^{2}}{4}=\pi$ sq. units

56. (C)

Area $=\frac{\pi \times 2^{2}}{4}-\frac{1}{2} \times 2 \times 2=\pi-2$ sq. units
57. (C)
(P) From graph the number of roots of the equation

$$
2-|x|=3-|x| \text { is two }
$$

(Q) $f(x)=x^{2}|x|=\left\{\begin{array}{cc}x^{3}, & x \geq 0 \\ -x^{3}, & x<0\end{array}\right.$

$$
f '\left(0^{+}\right)=6 \& f+\prime\left(0^{-}\right)=-6
$$

(R) For $f(x)$ to have local minima at $x=2$

$$
\begin{aligned}
& \quad a^{2}-9 a-9 \geq 1 \\
& (a-10)(a+1) \geq 0 \\
& a \in(-\infty,-1] \cup[10, \infty)
\end{aligned}
$$

(S) $6 \int_{0}^{3}|(x-1)(x-2)| d x=6\left\{\int_{0}^{1}(x-1)(x-2) d x-\int_{1}^{2}(x-1)(x-2) d x+\int_{2}^{3}(x-1)(x-2) d x\right\}$

$$
=6\left\{\frac{5}{6}+\left(\frac{1}{6}\right)+\frac{5}{6}\right\}=11
$$

58. (D)
(P) $f(x)=x^{4 / 3}-4 x^{1 / 3}$

$$
f^{\prime}(x)=\frac{4}{3}\left(\frac{x-1}{x^{2 / 3}}\right)
$$

(Q) $f(x)=5 x^{2 / 5}-x^{2}$

$$
f^{\prime}(x)=2\left(\frac{1-x^{8 / 5}}{x^{3 / 5}}\right)=2\left(\frac{\left(1-x^{1 / 5}\right)\left(1+x^{1 / 5}\right)\left(1+x^{2 / 5}\right)\left(1+x^{4 / 5}\right)}{x^{3 / 5}}\right)
$$

(R) $f(0)=\lim _{x \rightarrow 0} \frac{1}{x} \log \left(\frac{e^{x}-1}{x}\right)=\lim _{x \rightarrow 0} \frac{1}{\frac{e^{x}-1}{x}} \cdot \frac{x e^{x}-\left(e^{x}-1\right)}{x^{2}}=\frac{1}{2}$
(S) $f(x)=3 x^{2 / 3}-x^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=2\left(\frac{1-x^{4 / 3}}{x^{1 / 3}}\right)=2 \frac{\left(1-x^{1 / 3}\right)\left(1+x^{1 / 3}\right)\left(1+x^{2 / 3}\right)}{x^{1 / 3}} \\
& +\left.\right|_{-1}-\left.\frac{1}{1}\right|_{1} ^{-}
\end{aligned}
$$

59. (A)
(P) $f(x)$ is continuous $\forall x \in R$ but not differentiable at $x=2$
(Q) $g(x)$ is discontinuous and non-differentiable at $x=I$
$(R) h(x)$ is continuous and differentiable for $\forall x \in R$
(S) $\Psi(x)$ is continuous everywhere but not differentiable at $x=1$
60. (A)
(P) Required area $=4 \mathrm{~s}$

$$
\begin{aligned}
& \left.s=\int_{0}^{\pi}(x+\sin x) d x-\int_{0}^{\pi} x d x\right) \\
& =\frac{\pi^{2}}{2}-\cos p+\cos 0-\frac{\pi^{2}}{2}=2 . \text { sq. units. }
\end{aligned}
$$

(Q) Required area $=2 \int_{0}^{1} x e^{x} d x=2[x e x-e x]_{0}{ }^{1}=1$

(R) $\quad y^{2}=x^{3}$ and $|y|=2 x$ both the curve are symmetric about y-axis.

$$
4 x^{2}=x^{3} \quad \Rightarrow \quad x=0,4
$$

$$
\text { required area }=2 \int_{0}^{4}\left(2 x-x^{3 / 2}\right) d x=\frac{16}{5}
$$

(S) $\quad \sqrt{x}+\sqrt{|y|}=1$

Above curve is symmetric about x-axis

$$
\begin{aligned}
& \sqrt{|y|}=1-\sqrt{x} \text { and } \sqrt{x}=1-\sqrt{|y|} \Rightarrow \text { for } x>0, y>0 \sqrt{y}=1-\sqrt{x} \\
& \frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}}, \frac{d y}{d x}=-\sqrt{\frac{x}{y}} \\
& \frac{d y}{d x}<0, \text { function is decreasing required area }=\int_{0}^{1}(2 \sqrt{x}-2 x)=\frac{1}{3}
\end{aligned}
$$

