SOLUTIONS

WEEKLY TEST-7

RBA

(JEE ADVANCED PATTERN) Test Date: 09-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

1. (3)

Let M_{1} be the mass of the rod.
A ... (i)

$$
\begin{equation*}
N_{1} \sin \theta=(M+M) A \tag{ii}
\end{equation*}
$$

$A=g \tan \theta$
relation between A_{1} and A

$$
A_{1}=A \tan \theta
$$

So by solving these equations $M_{1}=\mathbf{3 M}$
$N=3$
2. (5)

Power of equivalent mirror $P_{M}^{\prime}=2 P_{2}+P_{M}$

$$
\begin{aligned}
& \frac{1}{f_{2}}=\left(\frac{3 / 2}{4 / 3}-1\right)\left(\frac{1}{R}+\frac{1}{R}\right)=\frac{1}{8} \times \frac{2}{R}=\frac{1}{4 R}, f_{2}=4 R \text { and } P_{2}=\frac{1}{4 R} \\
& -\frac{1}{f_{m}^{\prime}}=2 \times \frac{1}{4 R}+\frac{2}{R}=\frac{5}{2 R} \\
& f_{m}^{\prime}=-\frac{2}{5} R \\
& |h|=2\left|f_{m}^{\prime}\right| \\
& h=2 \times \frac{2}{5} R=4 m \\
& R=5 \mathrm{~m}
\end{aligned}
$$

3. (4)

$$
\begin{aligned}
& a=4 t \\
& a=4 \mathrm{~m} / \mathrm{s}^{2}=\mu_{\mathrm{s}} g \text { at } \quad(t=1 \mathrm{~s}) \\
& \mu_{s}=0.4 \\
& \frac{d v}{d t}=4 t-\mu_{k} g \quad(v \text { is relative velocity }) \\
& \int_{0}^{v} d v=\left[2 t^{2}-\mu_{k} g t\right]_{1}^{2} \\
& v_{2}=2\left(2^{2}-1^{2}\right)-\mu_{\mathrm{k}} g(1) \\
& v_{2}=6-\mu_{k} g \\
& v=0=v_{2}-\mu_{\mathrm{k}} g \\
& \mu_{k}=0.3 \\
& \therefore \\
& \frac{3 \mu_{s}}{\mu_{k}}=4
\end{aligned}
$$

4. (1)

$$
F \cos 37^{\circ}=\frac{\lambda L}{4} g
$$

(where λ is the mass/length of the chain).

$$
\begin{aligned}
& F \sin 37^{\circ}=T=f \leq \mu N \\
& \Rightarrow \quad \mu \geq \frac{1}{4} \Rightarrow \quad \mu_{\min }=\frac{1}{4} \\
& \therefore \quad n=1
\end{aligned}
$$

5. (5)

$$
\begin{aligned}
& \frac{T}{2}-m g=m a_{1} \\
& \frac{T}{4}-m g=m a_{2} \\
& \frac{T}{2^{n}}-m g=m a_{n} \\
& 2^{n-1} \times a_{1}+2^{n-2} \times a_{2}+\ldots \ldots+a_{n}+a_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& 2^{n-1}\left(\frac{T}{2}-m g\right)+2^{n-2}\left(\frac{T}{2^{2}}-m g\right)+\ldots \ldots+\left(\frac{T}{2^{n}}-m g\right)+\left(\frac{T}{2^{n}}-m g\right)=0 \\
& T\left(2^{n-2}+2^{n-4}+2^{n-6}+\ldots \ldots \ldots \ldots .+2^{-n}+2^{-n}\right)=m g\left(2^{n-1}+2^{n-2}+\ldots \ldots .1+1\right) \\
& T=3 m g \\
& \frac{3 m g}{2}-m g=m a_{1} \\
& \frac{m g}{2}=m a_{1} \\
& a_{1}=\frac{g}{2}=5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

6. (6)
7. (2)

Let refractive index of glass be μ
Let after first refraction, image distance be v then

$$
\frac{\mu}{v}-\frac{1}{\infty}=\frac{\mu-1}{R} \quad \Rightarrow \quad v=\frac{\mu R}{\mu-1}
$$

Now second refraction will take place.
So distance of first image from O is $u_{1}=\frac{\mu R}{\mu-1}-R=\frac{R}{\mu-1}$ and image is formed at R
$\therefore \quad \frac{1}{R}-\frac{\mu(\mu-1)}{R}=\frac{2(1-\mu)}{R} \Rightarrow \mu^{2}-3 \mu+1=0$.
So $\quad \mu=\frac{3+\sqrt{5}}{2}=\frac{2}{3-\sqrt{5}}$, there for $\mathrm{n}=2$
8. (5)

$$
\begin{aligned}
& \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{v}-\frac{1}{-2}=\frac{1}{1.5} ; \quad v=6 m \\
& m=\frac{v}{u}=-3 \\
& x=6-d ; \quad \tan \theta=\frac{0.3}{x} \\
& \Rightarrow \quad d=5 \mathrm{~m} .
\end{aligned}
$$

9. (A, C)
10. (A,C,D)

$$
F-T-\mu_{2} m_{2} g=m_{2} a, \quad T-\mu_{2} m_{2} g=m_{1} a
$$

for just equilibrium $a=0, \quad F=2 \mu_{2} m_{2} g=4 \mathrm{~N}$
If $F=6 \mathrm{~N}, a=1 \mathrm{~m} / \mathrm{s}^{2} \Rightarrow T=3 \mathrm{~N}$
11. (B, D)

Net upward force on three spheres applied by bottom $=$

$$
3 m g+\frac{3}{4} m g=\frac{15 m g}{4}
$$

For sphere $A, N \sqrt{3}=m g+\frac{m g}{4}, N=\frac{5 m g}{4 \sqrt{3}}$

12. (B)

Acceleration of block m with respect to inclined plane $=6$
Acceleration of inclined plane $=\frac{2}{\sqrt{3}}$
13. (B, C)

The ray is intersecting $y=0$ line at $x=1$ and x $=40$ line at $y=-1$.
$\therefore u=39 \mathrm{~cm}$

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \quad \Rightarrow \quad v=130 \mathrm{~cm}
$$

$\therefore \quad$ Equation of refracted ray is

$$
130 y=x-170
$$

If space on the right of the lens is filled with liquid of $\mu=4 / 3$, then

$$
\begin{aligned}
& \frac{1.5}{v_{1}}+\frac{1}{39}=\frac{0.5}{30} \\
& \frac{4}{3 v}-\frac{1.5}{v_{1}}=\frac{\left(\frac{4}{3}-1.5\right)}{-30} \\
& v=-390 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Equation of refracted ray is

$$
390 y+x+330=0
$$

14. (A, B, C, D)

The two parts of the lens will have different focal lengths. So, there are two images.

$$
\frac{1}{v_{1}}-\frac{1}{u}=\frac{1}{100} ; \quad m_{1}=\frac{v_{1}}{u}, \quad \frac{1}{v_{2}}-\frac{1}{u}=\frac{1}{200} ; \quad m_{2}=\frac{v_{2}}{u}
$$

For same height of images

$$
m_{1}=-m_{2} \quad \Rightarrow \quad v_{1}=-v_{2}
$$

$\Rightarrow u=\frac{-400}{3} \mathrm{~cm}$, $m_{1}=-3, \quad m_{2}=3, \quad m_{1} m_{2}=-9$
15. (A, C)

If the image is real and magnified means object is between f and $2 f$.
When lens immersed in water focal length,

$$
f_{1}=\frac{(\mu-1)}{\left(\frac{\mu}{\mu_{r}}-1\right)} f=4 f
$$

Now object is between pole and focus so image is virtual and magnified.
16. (A, C)

Path difference $=0$
$\frac{d^{2}}{D}=\frac{y d}{2 D}-\left(\frac{\mu_{2}}{\mu_{3}}-1\right) t$
$y=2 \mathrm{~mm}$
When slab is removed then path difference $=\frac{d^{2}}{D}-\frac{y_{1} d}{2 D}=0, y_{1}=2 d=4 \mathrm{~mm}$
17. (C)
18. (B)
19. Smaller image will be brighter as intensity $\propto \frac{1}{\text { Area }}$
$\therefore \quad(\mathrm{A})$
20. $\frac{v}{u}=2, v+u=180 \mathrm{~cm} \Rightarrow f=40 \mathrm{~cm}$

Using the formula $f=\frac{D^{2}-L^{2}}{4 D} \Rightarrow L=60 \mathrm{~cm}$
$\therefore \quad(C)$

CHEMISTRY

21. (7)
$\mathrm{He}, \mathrm{Be}, \mathrm{N}, \mathrm{Ne}, \mathrm{Mg}, \mathrm{Ar}, \mathrm{Ca}$, all are positive electron gain enthalpy.
22. (0)

Electronic configuration of $\mathrm{Pd}:[\mathrm{Ar}] 5 \mathrm{~s}^{0} 4 \mathrm{~d}^{10}$
23. (4)
24. (3)
$Z=\frac{P V_{m}}{R T}=\frac{3}{8}\left(\frac{P_{r} V_{r}^{m}}{T_{r}}\right)=\frac{3}{8} \times 2=\frac{3}{4}$
$\Rightarrow \mathrm{V}_{\mathrm{m}}=\left(\frac{3}{4}\right)\left(\frac{0.0821 \times 200}{8.21}\right)=\frac{3}{2} \mathrm{~L}$
\Rightarrow Volume occupied by 2 mole $=\frac{3}{2} \times 2=3 \mathrm{~L}$
25. (2)
$Z=1-\frac{a}{\text { RTV }_{m}} \quad$ Slope $=\frac{a}{R}$
$\therefore \mathrm{a}=\frac{0.4}{1.64} \times 0.082=2 \times 10^{-2}$
26. (5)

$\underset{20}{2 \mathrm{NH}_{3}}+\underset{10}{\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\underset{24}{2 \mathrm{NaOH}}+\underset{12}{\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Gram $=80 \times 10^{-3} \times 62.5=5$
27. (6)

28. (7)
$\mathrm{HF}, \bigcirc \mathrm{OH}, \mathrm{HCl}, \mathrm{CH}_{3}-\mathrm{COOH}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HBr}, \mathrm{CH}_{3}-\mathrm{SH}$
29. (A), (C), (D)
30. (A), (B), (C), (D)
31. (B), (C)
PF_{5} : Exists as PF_{5} molecular form in its solid phase.
32. (A), (C), (D)

Marshall's acid contain peroxy linkage
33. (B), (C), (D)
(A)

(B)

(C)

(D)

34. (A), (B), (D)
(A) (SIP)
 (Basic order)
(B)
 (Acidic order)
(C) $\mathrm{HC} \equiv \mathrm{CH}$ $>\mathrm{NH}_{3}$ (Acidic order)
sp hybrid carbon more elctronegative
(D)

Non equivalent
R.S.
35. (A), (B), (D)
(A) $+\mathrm{M} \rightarrow-\mathrm{NH}_{2}>-\mathrm{OH}$
(B)

(C)

-I due to SIR
(D)

Resonance stabilised
36. (A,B,D)

Third virial coefficient
(C) $=\mathrm{b}^{2}=1200 \mathrm{~cm}^{6} \mathrm{~mol}^{-2}$
$\mathrm{b}=34.64 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
Second virial coeefficnet.
(B$)=\mathrm{b}-\frac{\mathrm{a}}{\mathrm{RT}}$
$\therefore \mathrm{a}=\mathrm{RT}(\mathrm{b}-\mathrm{B})$

$$
a=\left(8.314 \times 10^{7}\right) 300(34.64-(-21.7)
$$

$\mathrm{a}=1.40 \times 10^{12}$ dyne $\mathrm{cm}^{4} \mathrm{~mol}^{-2}$
$T_{b}=\frac{a}{R b} V_{c}=3 b$
37. (C)

Balanced reaction: $6 \mathrm{Fe}^{+2}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{+3}+6 \mathrm{Fe}^{+3}+7 \mathrm{H}_{2} \mathrm{O}$
Millimole of dichromate ion is 2.35 hence millimole of Fe^{+2} ion $=6 \times 2.35=14.1$
$6 \mathrm{Fe}^{+2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{+2}+6 \mathrm{Fe}^{+3}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}^{+2}=6 \times 2.35=14.1$
38. (C)

Milimole of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=14.1$
So, weight of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=1.41 \times 10^{-2} \times 278=3.91 \mathrm{~g}$
Hence $\%$ purity $=(3.91 / 4.2) \times 100=93.0$
39. (D)
40. (D)

MATHEMATICS

41. (6)

Take \angle QPT $=\theta$
than $\sin \theta=\frac{R S}{P S}=\frac{r}{3 r}=\frac{1}{3} \Rightarrow \cos \theta=\frac{2 \sqrt{2}}{3}$

$$
\begin{array}{ll}
\Rightarrow & \frac{P T}{P Q}=\frac{2 \sqrt{2}}{3}
\end{array} \Rightarrow \frac{P T}{12}=\frac{2 \sqrt{2}}{3}
$$

42. (3)

Let P be point ' t ' i.e ($\mathrm{at}^{2}, 2 a t$) then point $Q \equiv-\frac{1}{t}$
point $P^{\prime} \equiv-t-\frac{2}{t}$ and point $Q^{\prime} \equiv \frac{1}{t}+2 t$
$P^{\prime} Q^{\prime}=a\left|3\left(t+\frac{1}{t}\right)\right| \sqrt{\left(t-\frac{1}{t}\right)^{2}+4}=3 a\left(t+\frac{1}{t}\right)^{2}$
$P Q=a\left(t+\frac{1}{t}\right)^{2}$
43. (8)

Normal : $y+t x=2 t+t^{3}$; slope of the normal is 1
hence $-t=1 P t=-1 P$ coordinates of P are $(1,-2)$
Hence parameter at $Q=t_{2}=-t_{1}-2 / t_{1}=1+2=3$
$\therefore \quad$ Coordinates at Q are $(9,6)$
$\therefore \quad \ell(\mathrm{PQ})=\sqrt{64+64}=8 \sqrt{2}$

44. (4)

Let the equation of line be $\frac{x}{\cos \theta}=\frac{y}{\sin \theta}=r$
$(O A \cos \theta, O A \sin \theta)$
($\mathrm{OB} \cos \theta, \mathrm{OB} \sin \theta$) will be satisfying
$y-x-10=0$ and $y-x-20=0$ respectively
if $P(r \cos \theta, r \sin \theta)$ then

$$
\frac{1}{\mathrm{r}^{2}}=\left(\frac{\sin \theta-\cos \theta}{10}\right)^{2}+\left(\frac{\sin \theta-\cos \theta}{20}\right)^{2}
$$

$\Rightarrow(r \cos \theta-r \sin \theta)^{2}=80$
Locus of P is $(y-x)^{2}=80$
45. (1)

Given $f\left(\frac{5 x-3 y}{2}\right)=\frac{5 f(x)-3 f(y)}{2} \forall x, y \in R$,
which explains that all the points that divide the line joining $P(y, f(y))$ and $Q(x, f(x))$ externally in the ratio $5: 3$ lies on the curve $y=f(x)$. Therefore it is a linear function

$$
\begin{aligned}
& \Rightarrow f(x)=a x+b \Rightarrow f(0)=b \Rightarrow b=3 \\
& f^{\prime}(x)=a \Rightarrow a=f^{\prime}(0)=2 \\
& \Rightarrow f(x)=2 x+3 \\
& \Rightarrow \text { Period of } \sin (f(\pi x)) \text { is } 1 .
\end{aligned}
$$

46. (3)

$$
\begin{aligned}
& f\left(x+\frac{7}{4}\right)=f\left(\frac{7}{4}-x\right) \\
& \Rightarrow b=\frac{-7 a}{2} \Rightarrow f(x)=a x^{2}-\frac{7 a}{2} x+a=7 x+a \\
& \Rightarrow a x^{2}-\frac{7(a+2)}{2} x=0 \text { has only one solution } \\
& \Rightarrow a=-2 \Rightarrow b=7 \quad \therefore b-a^{2}=3
\end{aligned}
$$

47. (8)

$$
\lim _{x \rightarrow 0} \frac{\tan 3 x-n \sin 2 x}{\left(\frac{\sin ^{-1} x}{x}\right)^{3} x^{3}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin 3 x-n \sin 2 x \cos 3 x}{x^{3} \cos 3 x}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x}{x}\left(\frac{3-4 \sin ^{2} x-2 n \cos x \cos 3 x}{x^{2} \cos 3 x}\right)
$$

Here $3-2 n=0 \Rightarrow n=3 / 2$
Also for $n=3 / 2$

$$
\begin{aligned}
& L=\lim _{x \rightarrow 0}\left(\frac{3-3 \cos x \cos 3 x}{x^{2}}-4 \frac{\sin ^{2} x}{x^{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{6-3 \cos 4 x-3 \cos 2 x}{2 x^{2}}-4 \\
& =\lim _{x \rightarrow 0} \frac{12 \sin 4 x+6 \sin 2 x}{4 x}-4 \\
& =12+3-4=11
\end{aligned}
$$

48. (1)
$\lim _{x \rightarrow \infty}\left\{x^{3 c}\left(1+\frac{4}{x}+\frac{1}{x^{3}}\right)^{c}-x\right\}$
$\lim _{x \rightarrow \infty} x\left[x^{3 c-1}\left\{1+\left(\frac{4}{x}+\frac{1}{x^{3}}\right)\right\}^{c}-1\right]$
$\lim _{x \rightarrow \infty} x\left[x^{3 c-1}\left\{1+c\left(\frac{4}{x}+\frac{1}{x^{3}}\right)\right\}+\ldots .-1\right]$
$3 \mathrm{c}=1$
49. (C, D)

Let centre of C be $Q(h, k)$, then its radius is $|k|$.
$\therefore \quad P Q=\sqrt{(h+1)^{2}+k^{2}}=1+|k|$
$\Rightarrow \mathrm{h}^{2}+2 \mathrm{~h}=2|\mathrm{k}|$

Also $\quad \mathrm{OQ}=\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}}=2-|\mathrm{k}|$
$\Rightarrow h^{2}=4-4|k|$
From (i) and (ii),

$$
\begin{aligned}
& 2\left(\mathrm{~h}^{2}+2 \mathrm{~h}\right)+\mathrm{h}^{2}=4 \\
\Rightarrow & 3 \mathrm{~h}^{2}+4 \mathrm{~h}-4=0 \\
\Rightarrow & \mathrm{~h}=\frac{2}{3} \quad(\because \mathrm{~h} \neq-2) \\
\therefore & \mathrm{k}= \pm \frac{8}{9}
\end{aligned}
$$

\therefore Equation of circle C is

$$
x^{2}+y^{2}-\frac{4}{3} x \mp \frac{16}{9} y+\frac{4}{9}=0
$$

50. (A, B, C,D)

Let us take $P\left(3 t_{1}{ }^{2}, 6 t_{1}\right)$ and $Q\left(3 t_{2}{ }^{2}, 6 t_{2}\right)$ on the parabola $y^{2}=12 x$
Here, $6 \mathrm{t}_{2}=2 \times 6 \mathrm{t}_{1} \Rightarrow \mathrm{t}_{2}=2 \mathrm{t}_{1}$
Points of intersection of tangents at P and Q are $\left(3 t_{1} t_{2}, 3\left(t_{1}+t_{2}\right)\right)$
For locus let us take $h=3 t, t_{2}=6 t_{1}{ }^{2}$ and $k=3\left(t_{1}+t_{2}\right)=9 t_{1}$
eleminating ' t_{1} ' we have $\mathrm{h}=6\left(\frac{\mathrm{k}}{9}\right)^{2}$
$\Rightarrow \quad \mathrm{k}^{2}=\frac{27}{2} \mathrm{~h} \Rightarrow \mathrm{y}^{2}=\frac{27}{2} \mathrm{x}$
points of intesection of normals at $P \& Q$ is $\left(6+3\left(t_{1}{ }^{2}+t_{2}{ }^{2}+t_{1} t_{2}\right),-3 t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)$
For locus let us take
$\mathrm{h}=6+3\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2}\right)=6+21 \mathrm{t}_{1}{ }^{2}$

$$
\mathrm{k}=-3 \mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=-18 \mathrm{t}_{1}^{3}
$$

Eliminating t_{1} we have $\left(\frac{\mathrm{h}-6}{21}\right)^{3}=\left(\frac{\mathrm{k}}{-18}\right)^{2}$
$\Rightarrow \quad 12(x-6)^{3}=343 y^{2}$
mid-points of P and $Q\left(3 \frac{\left(t_{1}^{2}+t_{2}{ }^{2}\right.}{2}, 3\left(t_{1}+t_{2}\right)\right)$
For locus let us take $2 \mathrm{~h}=3\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}\right)$
$\Rightarrow 2 \mathrm{~h}=15 \mathrm{t}_{1}{ }^{2} \& \mathrm{k}=3\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=9 \mathrm{t}_{1}$
Eliminating t_{1} we have $2 h=15\left(\frac{k}{9}\right)^{2} \Rightarrow 5 y^{2}=54 x$
when P is $(1,2 \sqrt{3})$ then Q is $(4,4 \sqrt{3})$
Hence, $P Q=\sqrt{9+12}=\sqrt{21}$
51. (A, C)

The focus of the parabola is at $(p / 2,0) \&$ directrix is $x=-p / 2$
centre of the circle is $(p / 2,0) \&$ radius $=\frac{p}{2}-\left(-\frac{p}{2}\right)=p$
Equation of the circle is

$$
\left(x-\frac{p}{2}\right)^{2}+(y-0)^{2}=p^{2} \Rightarrow x^{2}+y^{2}-p x-\frac{3 p^{2}}{4}=0
$$

solving this equation with $y^{2}=2 p x$ we get $x=\frac{p}{2}, y= \pm p$
\therefore The points of intersection are $\left(\frac{p}{2}, p\right) \&\left(\frac{p}{2},-p\right)$
52. (A, B, C, D)

If points A, B, C, D are concyclic then $a c=b d$
Also the points of intersection of lines are
$\left(\frac{\mathrm{ac}(\mathrm{b}-\mathrm{d})}{\mathrm{bc}-\mathrm{ad}}, \frac{\mathrm{bd}(\mathrm{c}-\mathrm{a})}{\mathrm{bc}-\mathrm{ad}}\right)$

Let (h, k) be the point of intersection :
since $c^{2}+a^{2}=b^{2}+d^{2}$
and $\mathrm{ac}=\mathrm{bd}$
$(\mathrm{c}-\mathrm{a})^{2}=(\mathrm{b}-\mathrm{d})^{2} \Rightarrow \mathrm{~h}= \pm \mathrm{k}$
hence locus of pt of intersection is $y= \pm x$
53. (B, C)
$\sin ^{-1}\left(a^{2} x^{2}+b^{2} y^{2}\right)+\cos ^{-1}|a x+b y|=\pi$
$\Rightarrow a^{2} x^{2}+b^{2} y^{2}=1$ and $a x+b y=0$
$\Rightarrow 2 \mathrm{axby}=-1$
54. (A,B,D)

We have $f(x)=\cos ^{-1}(-\{-x\})$
$D_{f}=R$
As $0 \leq\{-x\}<1 \quad \forall x \in R$
$\Rightarrow-1<-\{-x\} \leq 0$
So $R_{f}=\left[\frac{\pi}{2}, \pi\right)$

Clearly, f is neither even nor odd.
Butf $(x+1)=f(x) \Rightarrow f$ is periodic with period 1 .
55. (A, C, D)

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\tan ^{2}\{x\}}{\left(x^{2}-[x]^{2}\right)}=\lim _{x \rightarrow 0^{+}} \frac{\tan ^{2} x}{x^{2}}=1
$$

Also, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \sqrt{\{x\} \cot \{x\}}=\sqrt{\cot 1} \quad \Rightarrow \cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1$
56. (A, C)

$$
\begin{aligned}
& \ell=\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x) \sqrt{1+x}}{x^{3} \sqrt{1+x}(1+q x)} \\
& =\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x) \sqrt{1+x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{(1+q x)-(1+p x)\left(1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots\right)}{x^{3}} \\
& \lim _{x \rightarrow 0} \frac{q x-\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{3}}{16}-p x-\frac{p x^{2}}{2}+\frac{p x^{3}}{8}}{x^{3}}
\end{aligned}
$$

Now cofficient of x and x^{2} must be $0 \Rightarrow q-p=\frac{1}{2} \& \frac{p}{2}=\frac{1}{8} \Rightarrow p=\frac{1}{4}, q=\frac{3}{4}$
$\therefore \ell=-\frac{1}{32}$
57. (B)

Equation of tangent of slope m to $y^{2}=4 x$ is
$y=m x+\frac{1}{m}$
As (1) passes through $P(6,5)$, so
$5=6 m+\frac{1}{m}$
$\Rightarrow 6 \mathrm{~m}^{2}-5 \mathrm{~m}+1=0 \Rightarrow \mathrm{~m}=\frac{1}{2}$ or $\mathrm{m}=\frac{1}{3}$

Points of contact are $\left(\frac{1}{\mathrm{~m}_{1}^{2}}, \frac{2}{\mathrm{~m}_{1}}\right)$ and $\left(\frac{1}{\mathrm{~m}_{2}^{2}}, \frac{2}{\mathrm{~m}_{2}}\right)$
Hence $\quad P(4,4)$ and $Q(9,6)$

Area of $\triangle \mathrm{PQR}=\frac{1}{2}\left|\begin{array}{lll}6 & 5 & 1 \\ 4 & 4 & 1 \\ 9 & 6 & 1\end{array}\right|=\frac{1}{2}$
58. (C)
$y=\frac{1}{2} x+2 \Rightarrow x-2 y+4=0$
and $y=\frac{1}{3} x+3 \Rightarrow x-3 y+9=0$
Now equation of circle C_{2} touching $x-3 y+9=0$ at $(9,6)$, is

$$
(x-9)^{2}+(y-6)^{2}+\lambda(x-3 y+9)=0
$$

As above circle passes through (1,0), so

$$
\begin{equation*}
64+36+10 \lambda=0 \Rightarrow \lambda=-10 \tag{3}
\end{equation*}
$$

Circle C_{2} is $\mathrm{x}^{2}+\mathrm{y}^{2}-28 \mathrm{x}+18 \mathrm{y}+27=0$
Radius of C_{2} is

$$
\mathrm{r}_{2}^{2}=196+81-27=277-27=250 \Rightarrow r_{2}=5 \sqrt{10}
$$

59. (B)

$$
\begin{aligned}
& A=\left(\tan ^{-1} x+\cot ^{-1} x\right)^{3}-3 \tan ^{-1} x \cot ^{-1} x\left(\tan ^{-1} x+\cot ^{-1} x\right) \\
& \Rightarrow A=\left(\frac{\pi}{2}\right)^{3}-\frac{3 \pi}{2}\left(\tan ^{-1} x \cot ^{-1} x\right) \\
& \Rightarrow A=\frac{\pi^{3}}{8}-\frac{3 \pi}{2}\left(\tan ^{-1} x\right)\left(\frac{\pi}{2}-\tan ^{-1} x\right) \Rightarrow A=\frac{\pi^{3}}{32}+\frac{3 \pi}{2}\left(\tan ^{-1} x-\frac{\pi}{4}\right)^{2} \\
& \therefore \quad \frac{\pi^{3}}{32} \leq A<\frac{\pi^{3}}{8}
\end{aligned}
$$

60. (A)
$B=\left(\sin ^{-1} t+\cos ^{-1} t\right)^{2}-2 \sin ^{-1} t \cos ^{-1} t$
$\Rightarrow B=\frac{\pi^{2}}{4}-2 \sin ^{-1} t\left(\frac{\pi}{2}-\sin ^{-1} t\right) \Rightarrow B=\frac{\pi^{2}}{8}+2\left(\sin ^{-1} t-\frac{\pi}{4}\right)^{2}$
\therefore maximum value of $B=\frac{\pi^{2}}{8}+\frac{2 \pi^{2}}{16}=\frac{\pi^{2}}{4}$
Now $\quad \lambda=\frac{\pi^{3}}{32}$ and $\mu=\frac{\pi^{2}}{4}$
$\therefore \quad \frac{\lambda-\mu \pi}{\mu}=-\frac{7 \pi}{8} \quad \therefore \quad \cot ^{-1} \cot \left(\frac{\lambda-\mu \pi}{\mu}\right)=\frac{\pi}{8}$
