SOLUTIONS

PROGRESS TEST-5

$$
\text { CD-1801 }(\alpha), C D-1801(\beta)
$$ CDK-1801 \& CDS-1801 JEE MAIN PATTERN Test Date: 09-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1 st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

1. (B)

Direction of electric field or magnetic field may be parallel or antiparallel to the direction of velocity.
2. (A)
3. (B)
$F_{m}=F_{E}$
$e V B=e E$
$V=\frac{E}{B}=\frac{3.2 \times 10^{4}}{2 \times 10^{-3}}$
$=16 \times 10^{6} \mathrm{~m} / \mathrm{s}$

4. (C)

The horizontal force on curve current carrying were will be cancelled. The only vertical upward (to wards Y -axis) will act.

Hence,
$\mathrm{F}=\mathrm{i} \ell \mathrm{B}=\mathrm{i}(2 \mathrm{~L}) \mathrm{B}$
5. (A)

$$
\begin{aligned}
& \sqrt{2} \mathrm{~B}_{0} \mathrm{i} \ell \\
& \overrightarrow{\mathrm{~F}}=\mathrm{i}(\overrightarrow{\mathrm{~d} \ell} \times \overrightarrow{\mathrm{B}}) \\
& =\mathrm{i}\left\{1 \mathrm{j} \times \mathrm{B}_{0} \ell(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})\right\} \\
& =\mathrm{i}\left(-\mathrm{B}_{0} \ell \hat{\mathrm{k}}+\mathrm{B} \ell \hat{\mathrm{i}}\right) \\
& |\overrightarrow{\mathrm{F}}|=\sqrt{2} \mathrm{~B}_{0} \ell \mathrm{i}
\end{aligned}
$$

6. (B)

Effective length will 2 m along 45° with x -axis.

$$
\mathrm{F}=\mathrm{i}(\mathrm{~d} \ell \times \mathrm{B})
$$

7. (D)

Due to symmetry of the circuit, field will be zero at centre.
8. (C)
$F=\frac{m v}{d t}$
$i \ell B=\frac{m v}{d t}$
$\frac{q}{d t} \ell B=\frac{m v}{d t}$
$v=\frac{q \ell B}{m}$
9. (B)

The magnetic field due to two wires at P

$$
\begin{gathered}
B_{1}=\frac{\mu_{0} i}{2 \pi(d+x)} \\
B_{2}=\frac{\mu_{0} i}{2 \pi(d-x)}
\end{gathered}
$$

Both the magnetic fields act in opposite direction.
$\therefore \quad B=B_{2}-B_{1}=\frac{\mu_{0} i}{2 \pi}\left[\frac{1}{d-x}-\frac{1}{d+x}\right]=\frac{\mu_{0} i}{2 \pi}\left[\frac{d+x-d+x}{d^{2}-x^{2}}\right]=\frac{\mu_{0} i x}{\pi\left(d^{2}-x^{2}\right)}$.
10. (A)
magnetic field due to straight wire will be zero.
$B_{\text {net }}=$ magnetic field due to curved were
$=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$
$=\frac{\mu_{0}}{4 \pi} \cdot \frac{\mathrm{I}}{\mathrm{r}} \cdot \theta \otimes+\frac{\mu_{0}}{4 \pi} \cdot \frac{\mathrm{I}}{2 \mathrm{r}} \theta \odot+\frac{\mu_{0}}{4 \pi} \cdot \frac{\mathrm{I}}{3 \mathrm{r}} \otimes$
$=\frac{\mu_{0}}{4 \pi} \cdot \frac{\mathrm{I}}{\mathrm{r}} \cdot \theta\left(1-\frac{1}{2}+\frac{1}{3}\right)$

$$
\begin{aligned}
& =\frac{\mu_{0}}{4 \pi} \cdot \frac{I}{r} \cdot \theta\left(\frac{6-3+2}{6}\right)=\frac{5}{6} \times \frac{\mu_{0}}{4 \pi} \frac{I}{r} \theta \\
& B_{\text {net }}=\frac{5}{24} \frac{\mu_{0}}{\pi} \frac{I}{r} \theta
\end{aligned}
$$

11. (C)

Due to symmetry
The vertical component
will cancelled out

$B_{\text {net }}=B($ Horizontal $)$
$\mathrm{dB}_{\text {net }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2(\mathrm{dI}) \cos \theta}{\mathrm{R}}$
$=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \mathrm{I}}{\pi \mathrm{R}} \cos \theta \mathrm{d} \theta$
$B_{\text {net }}=\int d B_{\text {net }}=\frac{\mu_{0}}{4 \pi^{2}} \cdot \frac{2 I}{R} \int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta$
$=\frac{\mu_{0}}{4 \pi^{2}} \cdot \frac{2 I}{R} \cdot 2=\frac{\mu_{0} I}{\pi^{2} R}$
12. (C)

There will be no current in the circuit. Hence $B_{p}=0$
13. (A)

$$
B=3\left[\frac{\mu_{0} i}{4 \pi r}\left(\sin 60^{\circ}+\sin 60^{\circ}\right)\right]
$$

$$
\begin{aligned}
& =\frac{9 \mu_{0} i}{2 \pi a} \\
\therefore & \text { (A) }
\end{aligned}
$$

14. (C)

The effective $\mathrm{d} \ell$ will be along +ve x -axis

$$
\mathrm{F}=\mathrm{i} \ell \mathrm{~B}
$$

$$
=2 \times 4 \times 0.02
$$

0.16 upward
0.16j
$a=\frac{F}{m}=\frac{0.16}{100} \times 1000=1.6 \mathrm{~J}$
15. (B)
$R=\frac{m v}{q B}=\frac{\sqrt{2 m \cdot K . E .}}{q B}$
$R_{p}=\frac{\sqrt{2 m_{p} \times K . E}}{q B} \quad R_{\alpha}=\frac{\sqrt{2.4 m p . K . E}}{2 q B}$
$R_{D}=\frac{\sqrt{2.2 m_{p} \cdot K E}}{q B}$
$R_{p}: R_{D}: R_{\alpha}=1: \sqrt{2}: 1$
16. (C)

Sections $A B$ and $D E$ produce no field at O. Sections $B C$ and $E F$ produce equal fields at O,
$B=\frac{\mu_{0} I}{2 \pi a}$.
\therefore (C)
17. (D)

The Magnitude of magnetic field due to circular loop at the center C is

$$
B=\frac{\mu_{0} I}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

\therefore (D)
18. (A)

$$
\vec{F}=\vec{F}_{e}+\vec{F}_{m}, \quad \vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})=0 \Rightarrow \quad B=\frac{E}{v}=10^{3} \mathrm{~Wb} / \mathrm{m}^{2}
$$

\therefore (A)
19. (A)

Small circles $3 / 4^{\text {th }}$. Big circles $1 / 4^{\text {th }}$ part produces effective magnetic fields

$$
\left|\vec{B}_{n e t}\right|=\frac{3}{4} \times \frac{\mu_{0} I}{2 R}+\frac{1}{4} \frac{\mu_{0} I}{2(2 R)}=\frac{7 \mu_{0} I}{16 R}
$$

20. (B)

$$
T=\frac{2 \pi m}{q B}, \frac{T_{\alpha}}{T_{p}}=\frac{m_{\alpha}}{m_{p}} \cdot \frac{q_{p}}{q_{\alpha}}=2
$$

21. (C)
$\mathrm{Q}_{1}+\mathrm{Q}_{2}=80$
$\frac{Q_{1}}{2}=\frac{Q_{2}}{3}$
$3 Q_{1}=2 Q_{2}$
$\frac{2 \mathrm{Q}_{2}}{3}+\mathrm{Q}_{2}=80 \quad \mathrm{Q}_{2}=\frac{80 \times 3}{5}=48 \mu \mathrm{C}$
22. (D)

Inital Energy stored $=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} 2 \cdot \mathrm{~V}^{2}=\mathrm{V}^{2}$
Charge on capactor $=2 \mathrm{~V}$
When switch is turn to point (2).

$$
\begin{aligned}
& \frac{Q_{0}-Q}{2}=\frac{Q}{8} \\
& \frac{2 V-Q}{2}=\frac{Q}{8} \Rightarrow V=\frac{Q}{8}+\frac{Q}{2}
\end{aligned}
$$

$$
\frac{Q+4 Q}{8}=V
$$

$$
\mathrm{Q}=\frac{8 \mathrm{~V}}{5}
$$

now final Energy

$$
\begin{aligned}
& \frac{1}{2} \frac{\left(Q_{0}-Q\right)^{2}}{2}+\frac{1}{2} \frac{Q^{2}}{8} \\
& =\frac{1}{2} \frac{(2 \mathrm{~V}-8 \mathrm{~V} / 5)^{2}}{2}+\frac{1}{2}\left(\frac{8 \mathrm{~V}}{5}\right)^{2} \times \frac{1}{8}
\end{aligned}
$$

$$
\frac{1}{4} \times\left(\frac{2 \mathrm{~V}}{5}\right)^{2}+\frac{1}{16} \times\left(\frac{8 \mathrm{~V}}{5}\right)^{2}=\frac{1}{4} \times \frac{36}{25} \mathrm{~V}^{2}+\frac{1}{16} \times \frac{16}{25} \mathrm{~V}^{2}
$$

$$
=\frac{2}{5} \mathrm{~V}^{2}
$$

$$
=\frac{1}{4} \times \frac{4}{25} \mathrm{~V}^{2}+\frac{1}{16} \times \frac{64}{25} \mathrm{~V}^{2}=\left(\frac{1+4}{25}\right) \mathrm{V}^{2}
$$

$$
=\frac{1}{5} \mathrm{~V}^{2}=0.2 \mathrm{~V}^{2}
$$

$\%$ of Energy less $=\frac{\mathrm{V}^{2}-0.2 \mathrm{~V}^{2}}{\mathrm{~V}^{2}} \times 100=80 \%$
23. (C)
24. (C)

Here fig. R_{1} and R_{2} are same
Henec $P_{2} \geq P_{1}>P_{3}$
25. (B)

In loop 1

$$
\begin{align*}
& 3 \mathrm{I}_{1}+1\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=6 \\
& 4 \mathrm{I}_{1}-\mathrm{I}_{2}=6 \quad \ldots . . \text { (i) } \tag{i}
\end{align*}
$$

In loop 2

$$
\begin{align*}
& 3 \mathrm{I}_{2}-9+2 \mathrm{I}_{2}-\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
& 6 \mathrm{I}_{2}-\mathrm{I}_{1}=9 \quad \ldots . \text { (ii) } \tag{ii}
\end{align*}
$$

Solving eq ${ }^{n}$ (i) and (ii)
we get $\left(I_{1}-I_{2}\right)=0.13 A$ from Q to P.
26. (B)

Potential difference between two pionts due to a infinitely long charge wire of charge per unit length λ is $\frac{\lambda}{2 \pi \varepsilon_{0}} \ell n\left(\frac{r_{2}}{r_{1}}\right)$
27. (D)

$$
\phi=\frac{\mathrm{q}_{\text {inclosed }}}{\varepsilon_{0}}
$$

$=\frac{\pi\left(\mathrm{R}^{2}-\mathrm{x}^{2}\right) \sigma}{\varepsilon_{0}}$
28. (C)

29. (A)

Charge distribution \propto radius
$q_{\text {total }}=100+50=150 \mu \mathrm{C}$
$q_{1}^{\prime}: q_{2}^{\prime}=R_{1}: R_{2}=1: 2$

$$
\begin{gathered}
\mathrm{q}_{1}^{\prime}=\frac{1}{3} \times 150=50 \mu \mathrm{C} \\
\mathrm{q}_{2}^{\prime}=\frac{2}{3} \times 150=100 \mu \mathrm{C}
\end{gathered}
$$

($50 \mu \mathrm{C}$ shifted from small to big sphere)
30. (C)
x component of force on $-q \Rightarrow$

$F_{1} \cos (90-\theta)+F_{2}$
$=\frac{K q_{1} q_{3}}{a^{2}} \sin \theta+\frac{K q_{1} q_{2}}{b^{2}}$

CHEMISTRY

31. (D)

Plots AD shows vapour pressure of B containing A volatile component. Plots $B C$ show vapour pressure of A containing B volatile component. Plot $C D$ show vapour pressure of liquid solution containing A and B volatile components

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \\
& \therefore \mathrm{E}_{\mathrm{H}}=\mathrm{EF}+\mathrm{EG}
\end{aligned}
$$

32. (A)

Elevation in boiling point \propto concentration of a solution. Thus, the order of concentration of solutions is I < II < III
33. (C)
$\mathrm{T}_{\mathrm{B}}^{\circ}>\mathrm{T}_{\mathrm{A}}^{\circ}$ [From diagram]
$B \rightarrow$ Residue
A \rightarrow Distillate
34. (B)

The mixture will show positive deviation from Raoult's law hence boiling point of an azeotropic mixture of water-ethanol is less than that of both water and ethanol.
35. (D)

On changing external pressure, composition of azeotrope alters.
36. (B)
$\Delta \mathrm{G}_{1}^{\circ}=-2 \Delta \mathrm{G}_{2}^{\circ}$
$\mathrm{E}_{\mathrm{Cr}_{\left[\mid \mathrm{Cl}_{2}\right.}}=-1.36 \mathrm{~V}$
37. (C)
$\Delta G_{1}^{\circ}=-1 \times F(x)=-R T \ln K_{1}$
$\Delta G_{2}^{\circ}=-1 \times F(y)=-R T \operatorname{In} K_{2}$
$\Delta G_{2}^{\circ}=2 \Delta G_{1}^{\circ}=-2 R T \operatorname{In} k_{1}$
$\therefore \mathrm{K}_{2}=\mathrm{K}_{1}^{2}, \mathrm{x}=\mathrm{y}$
38. (B)
$E=E^{\circ}-\frac{0.0591}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
$y=C-m x$
39. (A)
(A) True $[B]_{t}=k_{I} t ; 0.25=\frac{1}{\sqrt{3}} t ; t=0.25 \sqrt{3}$

$$
[D]_{t}=k_{I I} t=\sqrt{3} \times 0.25 \times \sqrt{3}=0.75 \mathrm{M}
$$

(B) False if $[C]=[A]$ then at that time $[B]<[D]$
(C) False $\mathrm{t}_{100 \%}=\frac{\mathrm{a}}{\mathrm{k}}$ (for zero order)

$$
\frac{\left(\mathrm{t}_{100 \%}\right)_{\mathrm{I}}}{\left(\mathrm{t}_{100 \%}\right)}=\frac{\mathrm{a}_{\mathrm{I}}}{\mathrm{a}_{\text {II }}} \cdot \frac{\mathrm{k}_{\mathrm{I}}}{\mathrm{k}_{\text {II }}}=\frac{0.5}{1} \times \frac{\sqrt{3}}{1 / \sqrt{3}}=\frac{3}{2}
$$

(D) $[A]_{t}=[A]_{0}-k_{t} t$ or $[A]_{t}=0.5-\frac{1}{\sqrt{3}} t$
$[C]_{t}=[C]_{0}-k_{\text {II }}$ or $[C]_{t}=1-\sqrt{3} t$
if $[A]=[C]_{t}$
i.e., $0.5-\frac{1}{\sqrt{3}} t=1-\sqrt{3} t$ or $\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) t=0.5$
$t=\frac{\sqrt{3}}{4} \min$.
40. (B)
$A+B \underset{\text { fast }}{\stackrel{\text { slow }}{\rightleftharpoons}} I A B$; So $E_{a(f)}$ is high and $E_{a(b)}$ is low. $k_{1} \ll k_{2}$; So, E_{a} for this step is very high and for next step is low and overall reaction is exothermic.
41. (D)

(enolform)
(Due to presence of $2 \mathrm{nd}>\mathrm{C}=\mathrm{O}$ size of conjugation becomes larger. There is intramolecular H -bonding also in enolic form.
42. (B)

Due to $+l$ effect of two CH_{3} group attached with nitrogen atom its K_{b} will be high
43. (B)

Where -Ve charge can be created by base attack and -Ve charge goes after resonace from these sites H atom can be replaced by D .
44. (C)

Due to strong -l effect of $\stackrel{\oplus}{N} \mathrm{H}_{3}$ at C_{2} position.
45. (A)
(I)

(II)

(III)

(IV)

(V)

46. (D)

I and (III) satisfy conditions for showing geometrical isomerism.
47. (D)

Acid-Base reaction always shifts towards weak acid and weak base
48. (D)

(2-Ethynoyle ethanoic acid)
49. (C)

Compound (c) is Aromatic

(i) Cyclic
(ii) Planar
(iii) Cyclic delocalisation
(iv) $(4 n+2) \pi=6 \pi n=1$
50. (B)
is most stable due to electron withdrawing effect of NO_{2} group.
51. (C)
$\mathrm{H}_{2} \mathrm{O}$ has maximum dielectric constant.
52. (D)
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}: \rightarrow$ L.P. $=1, \sigma$-bonds $=2, \pi$ bonds $=2$
$\mathrm{H}-\stackrel{+}{\mathrm{N}} \equiv \overline{\mathrm{C}}: \rightarrow$ L.P. $=2, \sigma$-bonds $=2, \pi$ bonds $=2$
53. (B)

54. (D)

$$
N_{b}=4, N_{a}=0
$$

$\therefore \quad$ Bond order $=\frac{1}{2}\left[\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right]=2$
55. (C)

Electronegativity of $\mathrm{S}<\mathrm{O}<\mathrm{F}$.
56. (A)

57. (C)
F.C. $=\mathrm{V}-\frac{\mathrm{s}}{2}-\mathrm{u}$

V - Valence electrons, s-shared electrons, u-unshared electron.
58. (D)

Cr has maximum oxidation state $(+6)$ in $\mathrm{K}_{2} \mathrm{CrO}_{4}$ and thus has minimum radius.
59. (A)
$\mathrm{Mn}^{2+}\left(3 \mathrm{~d}^{5}\right)$ is more stable than $\mathrm{Mn}^{3+}\left(3 \mathrm{~d}^{4}\right)$.
60. (C)

Cs is highly electropositive element hence it forms Cs^{+}ion.

$$
\mathrm{CsI}_{3} \rightleftharpoons \mathrm{Cs}^{+}+\mathrm{I}_{3}^{-}
$$

MATHEMATICS

61. (C)

$$
f(0)=0
$$

62. (A)

$$
\begin{aligned}
& I=\int_{\sin ^{-1} a}^{\cos ^{-1} a}\left(\frac{[2 x]}{[2 x]+[\pi-2 x]}\right) d x \\
& I=\int_{\sin ^{-1} a}^{\cos ^{-1} a}\left(\frac{[\pi-2 x]}{[\pi-2 x]+[2 x]}\right) d x \quad\left(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right)
\end{aligned}
$$

$$
2 \mathrm{I}=\int_{\sin ^{-1} \mathrm{a}}^{\cos ^{-1} \mathrm{a}} 1 \cdot \mathrm{dx}
$$

$$
I=\frac{1}{2}\left(\cos ^{-1} a-\sin ^{-1} a\right)=\frac{\pi}{4}-\sin ^{-1} a
$$

63. (D)

Given equation is satisfied if $\cos x d x=d(f(x)) \Rightarrow f(x)=\sin x$
64. (D)

$$
\begin{aligned}
& \int\left(x^{7}+x^{5}\right) \sqrt{2 x^{2}+3} d x=\frac{1}{12} \int\left(12 x^{5}+12 x^{3}\right) \sqrt{2 x^{6}+3 x^{4}} d x \\
& \quad \text { Put } 2 x^{6}+3 x^{4}=\mathrm{t} \quad \therefore\left(12 x^{5}+12 x^{3}\right) \mathrm{dx}=\mathrm{dt} \\
& \quad=\frac{1}{12} \int \sqrt{\mathrm{t}} \mathrm{dt} \\
& \quad=\frac{\mathrm{x}^{6}}{18}\left(2 \mathrm{x}^{2}+3\right)^{3 / 2}+C
\end{aligned}
$$

65. (A)
$\lim _{x \rightarrow 1^{-}} f(x)=3=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
LHD at $(x=1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=3 \ln 3$
RHD at $(x=1)=-1$.
66. (A)

Required sum $=\int_{0}^{1} \frac{1+\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$
$=\left[\tan ^{-1} x\right]_{0}^{1}+\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{\pi}{4}+\frac{1}{2} \ln 2$
67. (C)

Put $\ln x=t$

$$
I=\int e^{t}\left(\frac{t-1}{t^{2}+1}\right)^{2} d t=\int e^{t}\left(\frac{1}{t^{2}+1}-\frac{2 t}{\left(t^{2}+1\right)^{2}}\right) d t \quad=\frac{e^{t}}{t^{2}+1}+c=\frac{x}{(\ln x)^{2}+1}+c
$$

Hence (c) is the correct answer.
68. (D)

$$
\lim _{x \rightarrow 0} \frac{x-e^{x}+1-(1-\cos 2 x)}{x^{2}}=-\frac{1}{2}-2=-\frac{5}{2} .
$$

$\therefore \quad$ For continuity, $\mathrm{f}(0)=-\frac{5}{2}$.
$\therefore[f(0)]\{f(0)\}=\frac{-3}{2}$
69. (A)

Substituting $x=p^{6}, d x=6 p^{5} d p$, we have

$$
\begin{aligned}
I & =\int \frac{6 p^{5}\left(p^{6}+p^{4}+p\right)}{p^{6}\left(1+p^{2}\right)} d p=\int \frac{6\left(p^{5}+p^{3}+1\right)}{\left(p^{2}+1\right)} d p=\int 6 p^{3} d p+\int\left(\frac{6}{p^{2}+1}\right) d p \\
& =\frac{6 p^{4}}{4}+6 \tan ^{-1} p=\frac{3}{2} x^{2 / 3}+6 \tan ^{-1}\left(x^{1 / 6}\right)+c
\end{aligned}
$$

Hence (a) is the correct answer.
70. (A)

It is possibe only when $f(x)$ is differentiable at $x=1$ and $f^{\prime}(1) \neq 0$.

$$
\begin{array}{ll}
\Rightarrow & 1+\frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2}=-1 \Rightarrow b^{3}+b^{2}+7 b+3=0 \\
& f(b)=b^{3}+b^{2}+7 b+3 \\
\therefore & f^{\prime}(b)=3 b^{2}+2 b+7>0 \forall b \in R \\
\Rightarrow & f(b)=0 \text { will have exactly one real root. }
\end{array}
$$

71. (D)
$f^{\prime}(x)=6 x^{2}-6(a-3) x+6 a$
$f^{\prime}(x)=0$ must have two distinct real roots of which at least one is negative root.
$y=f^{\prime}(x):$
case 1 :

$$
6 \mathrm{a}<0 \Rightarrow \mathrm{a}<0
$$

Case 2 :

$$
\left.\begin{array}{l}
\mathrm{D}>0 \Rightarrow \mathrm{a} \in(-\infty, 1) \cup(9, \infty) \\
\text { and }-\frac{\mathrm{B}}{2 \mathrm{~A}}<0 \Rightarrow \mathrm{a} \in(-\infty, 3) \\
\text { and } \mathrm{C} \geq 0 \quad \Rightarrow \mathrm{a} \in[0, \infty) \\
\mathrm{a} \in(-\infty, 1)
\end{array}\right\} \Rightarrow a \in[0,1)
$$

72. (D)

$$
\tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\tan ^{-1}\left(\frac{2}{4 r^{2}}\right)=\tan ^{-1}\left(\frac{(2 r+1)-(2 r-1)}{1+(2 r+1)(2 r-1)}\right)=\tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)
$$

Thus,

$$
\begin{aligned}
& \sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\sum_{r=1}^{n}\left[\tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)\right]=\tan ^{-1}(2 n+1)-\tan ^{-1}(1) \\
& =\tan ^{-1}(2 n+1)-\frac{\pi}{4} \\
\therefore & \lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\lim _{n \rightarrow \infty}\left[\tan ^{-1}(2 n+1)-\frac{\pi}{4}\right] \\
& =\tan ^{-1}(\infty)-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} .
\end{aligned}
$$

73. (D)
74. (A)
$t=\sin ^{2} x$.
$I=\frac{1}{2} \int e^{t}(2-t) d t=\frac{3}{2} e^{t}-t \frac{e^{t}}{2}+C=\frac{1}{2} e^{\sin ^{2} x}\left(3-\sin ^{2} x\right)+C$
75. (D)
$f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)$
$f(-1)=-21$
$f(1)=-1$
$f(3)=-5$
$f(5)=15$
$\because \quad x \notin(-1,5)$
\Rightarrow Absolute maximum value of $f(x)$ does not exist.
76. (D)

From graph the function has local minimum at $x=-1,1 / 3$ and maximum at $x=0$.

77. (C)
$\int_{0}^{1} \cos ^{-1} \cos [x] d x+\int_{1}^{2} \cos ^{-1}(\cos [x]) d x+\int_{2}^{3} \cos ^{-1} \cos [x] d x+\int_{3}^{4} \cos ^{-1} \cos [x] d x+\int_{4}^{5} \cos ^{-1} \cos [x] d x$ $=\int_{0}^{1} \cos ^{-1}(1) d x+\int_{1}^{2} 1 \cdot d x+\int_{2}^{3} 2 d x+3 \int_{3}^{4} d x+\int(2 \pi-4) d x=0+1+2+3+2 \pi-4=2 \pi+2$
78. (B)

The equation of the curve is $y-e^{x y}+x=0$
$\Rightarrow \frac{d y}{d x}-e^{x y}\left(y+x \frac{d y}{d x}\right)+1=0 \Rightarrow \frac{d y}{d x}\left(1-x e^{x y}\right)=y e^{x y}-1 \Rightarrow \frac{d x}{d y}=\frac{1-x e^{x y}}{y e^{x y}-1}$
Clearly, $\frac{d x}{d y}=0$ at $(1,0)$. So, required point is $(1,0)$.
79. (C)
$I=\int_{0}^{\pi / 2} \frac{\cos \theta-\sin \theta}{(1+\cos \theta)(1+\sin \theta)} d \theta$
$=\int_{0}^{\pi / 2} \frac{\sin \theta-\cos \theta}{(1+\sin \theta)(1+\cos \theta)} d \theta \quad$ [using property] $\quad \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
$2 I=0 \Rightarrow I=0$
80. (D)
$g^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{\cosh -1}{h}=0$
$g^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{-h+b-1}{-h}$ and for existence of limit, $b=1$

$$
\Rightarrow \quad g^{\prime}\left(0^{-}\right)=1
$$

81. (A)

$$
\begin{aligned}
\mathrm{I}=\int_{0}^{2 \pi} \cos ^{-1}(\sin x) \mathrm{dx}= & \int_{0}^{2 \pi} \cos ^{-1}(-\sin x) \mathrm{dx} \\
& =\int_{0}^{2 \pi}\left(\pi-\cos ^{-1}(\sin x)\right) \mathrm{dx}
\end{aligned}
$$

$$
2 \mathrm{I}=\int_{0}^{2 \pi} \pi \mathrm{dx} \Rightarrow \mathrm{I}=\pi^{2}
$$

82. (B)

Put $1+x^{2}=t^{2}$
83. (B)

$$
f(x)= \begin{cases}x-2 k \pi ; & 2 k \pi-\frac{\pi}{2} \leq x \leq 2 k \pi+\frac{\pi}{2} \\ (2 k+1) \pi-x ; & 2 k \pi+\frac{\pi}{2}<x \leq 2 k \pi+\frac{3 \pi}{2}\end{cases}
$$

84. (C)

$$
\begin{aligned}
I & =\int_{-\pi / 2}^{\pi / 2}[\tan x] d x=\int_{-\pi / 2}^{\pi / 2}[-\tan x] d x=\int_{-\pi / 2}^{\pi / 2}(-1-[\tan x]) \mathrm{dx} \quad(\because[-x]=-1-[x] \forall x \notin I) \\
& =-\pi-I \Rightarrow I=-\frac{\pi}{2}
\end{aligned}
$$

85. (B)

$$
\begin{aligned}
f^{\prime}(x) & =8 x^{3}-9(a-3) x^{2}+12 a x+a \\
f^{\prime \prime}(x) & =24 x^{2}-18(a-3) x+12 a \\
& =6 \cdot\left\{4 x^{2}-3(a-3) x+2 a\right\}
\end{aligned}
$$

$f "(x)=0$ has roots of opposite signs $\quad \Rightarrow a \in(-\infty, 0)$
86. (A)

Let $\mathrm{I}=\int \frac{3+2 \cos \mathrm{x}}{(2+3 \cos \mathrm{x})^{2}} \mathrm{dx}$
Multiplying N^{r}. \& D^{r}. by $\operatorname{cosec}^{2} x$, we get
$\Rightarrow \quad \mathrm{I}=\int \frac{\left(3 \operatorname{cosec}^{2} \mathrm{x}+2 \cot \mathrm{x} \operatorname{cosec} \mathrm{x}\right)}{(2 \operatorname{cosec} \mathrm{x}+3 \cot \mathrm{x})^{2}} \mathrm{dx}$

$$
=-\int \frac{-3 \operatorname{cosec}^{2} x-2 \cot x \operatorname{cosec} x}{(2 \cos e c x+3 \cot x)^{2}} d x=\frac{1}{2 \operatorname{cosec} x+3 \cot x}=\left(\frac{\sin x}{2+3 \cos x}\right)+c
$$

Hence (a) is the correct answer.
87. (B)

It is given that the tangent at each point of the curve $y=\frac{2}{3} x^{3}-2 a x^{2}+2 x+5$ makes an acute angle with the positive direction of x-axis.

$$
\begin{array}{rll}
& \therefore \quad \frac{d y}{d x} \geq 0 \quad \text { for all } x \\
\Rightarrow & 2 x^{2}-4 a x+2 \geq \text { ofor all } x \\
\Rightarrow & x^{2}-2 a x+1 \geq 0 \quad \text { for all } x \\
\Rightarrow & 4 a^{2}-4 \leq 0 \quad \Rightarrow \quad a^{2}-1 \leq 0 \quad \Rightarrow-1 \leq a \leq 1
\end{array}
$$

88. (A)

$$
\begin{aligned}
& I=\int\left(x+\frac{1}{x}\right)^{n+5}\left(\frac{x^{2}-1}{x^{2}}\right) d x, \text { put } x+\frac{1}{x}=p \text { then, }\left(1-\frac{1}{x^{2}}\right) d x=d p \\
& \Rightarrow \quad \int p^{n+5} d p=\frac{p^{n+6}}{n+6}+c=\frac{\left(x+\frac{1}{x}\right)^{n+6}}{n+6}+c .
\end{aligned}
$$

Hence (a) is the correct answer.
89. (A)

We have, $\quad 2 x^{2}+y^{2}=12$
Differentiating w.r.t. x , we get

$$
4 x+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{2 x}{y} \Rightarrow\left(\frac{d y}{d x}\right)_{(2,2)}=-2
$$

The equation of the normal at $(2,2)$ is

$$
\begin{equation*}
y-2=\frac{1}{2}(x-2) \Rightarrow x-2 y+2=0 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii), we obtain that the coordinates of their points of intersection are (2, 2) and (-22/9, -2/9).
Hence, the normal to the curve at $(2,2)$ cuts it again at $(-22 / 9,-2 / 9)$.
90. (D)

$$
\begin{equation*}
I=\int_{0}^{\pi / 2} \sin x \sin 2 x \sin 3 x d x \tag{i}
\end{equation*}
$$

Using $\int_{0}^{a} f(x)=\int_{0}^{a}(a-x) d x$
$I=-\int_{0}^{\pi / 2} \cos x \sin 2 x \cos 3 x d x$
Adding (i) and (ii) we get,

$$
\begin{aligned}
& 2 I=\int_{0}^{\pi / 2} \sin 2 x(\sin x \sin 3 x-\cos x \cos 3 x) d x \\
& =-\int_{0}^{\pi / 2} \sin 2 x \cos 4 x d x=-\frac{1}{2} \int_{0}^{\pi / 2}(\sin 6 x-\sin 2 x) d x \\
& =\left(\frac{\cos 6 x}{12}-\frac{\cos 2 x}{4}\right)_{0}^{\pi / 2}=\left(-\frac{1}{12}+\frac{1}{4}\right)-\left(\frac{1}{12}-\frac{1}{4}\right)=-\frac{1}{6}+\frac{1}{2}=\frac{1}{3} \Rightarrow I=\frac{1}{6}
\end{aligned}
$$

