SOLUTIONS

PROGRESS TEST-4

CD-1802

JEE ADVANCED PATTERN

Test Date: 09-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1 st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

CHEMISTRY

1. (C)
 extent of conjugation becomes very high.
(ii) due to intramolecular H -bording.
2. (A)

Aromatic ion
3. (C)

Site (c) is more basic due to localisation of lone pair of nitrogen atom. But in case of site (a) and (b) Ione pair electron is delocalised.
4. (C)
$\frac{r_{2}}{r_{1}}=\frac{P_{\mathrm{A}_{2}} \cdot P_{\mathrm{B}_{2}}^{2}}{\mathrm{P}_{\mathrm{A}_{1}} \cdot P_{\mathrm{B}_{1}}^{2}}=\frac{0.1 \times(0.4)^{2}}{0.4 \times 1^{2}}=\frac{1}{25}$
5. (C)

For an ideal solution $\Delta \mathrm{H}_{\text {mix }}=0$ and $\Delta \mathrm{S}_{\text {mix }}$ is always positive so $\Delta \mathrm{G}_{\text {mix }}$ is negative.
6. (D)

Only solvent molecule can pass through SPM.
Osmotic pressure $\pi \alpha$ iC (at constant T)
7. (D)
$\mathrm{Li}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{LiBF}_{4} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{~F}+\mathrm{BF}_{3}$
$\mathrm{BeSO}_{4} \xrightarrow{\Delta} \mathrm{BeO}+\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}$

$$
\mathrm{Na}_{2} \mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}
$$

$\mathrm{BeCO}_{3} \xrightarrow{\Delta} \mathrm{BeO}+\mathrm{CO}_{2}$
8. (A)
N^{3-} and O^{+}respectively.
9. (A), (B)
CHCl_{3} is more acidic than CHF_{3} because its conugate base $\mathrm{C}_{\mathrm{Cl}}^{3}$ is more stablised due to d orbital resonance. Which is albsent in $\mathrm{C}_{\mathrm{F}_{3}}$ ion.

magnitude of ortho effect is very high incase of large Br atom.
10. (A), (B), (C)

For an elementary reaction $a A+b B \longrightarrow c C+d D$ rate law is always $r=k[A]^{a}[B]^{b}$ but not vice versa.

For a complex reaction $a A+b B \longrightarrow C C+d D$ rate law may or may not be $r=k[A]^{a}[B]^{b}$
11. (A), (B), (D)

In case of phenyl carbocation positive charge appears on carbon atom is localised because of presence of vacant sp^{2} orbital.
12. (A, B, C, D)

Factual
13. (A), (B), (C), (D)
$\mathrm{A}(\mathrm{g}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$t=0 \quad 400$
$t=20 \quad 400-x \quad 2 x \quad x$
So $400-x+2 x+x=1000$
$x=300 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{K}=\frac{1}{20} \ln \frac{400}{100}=\frac{2 \ln 2}{20}=0.0693 \mathrm{~min}^{-1}$
$\mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{~K}}=\frac{0.693}{0.0693}=10 \mathrm{~min}$
$\frac{30}{10} \times \ln 2=\ln \frac{400}{400-x}$
$8=\frac{400}{400-x} \Rightarrow 400-x=50$
$\Rightarrow x=350 \mathrm{~mm} \mathrm{Hg}$
Partial pressure of C after $30 \mathrm{~min}=350 \mathrm{~mm} \mathrm{Hg}$
Total pressure after $30 \mathrm{~min}=400+2 x=400+700=1100 \mathrm{~mm}$ of Hg .
14. (B)

For max. con. of B ;
$\frac{d[B]}{d t}=0 ;$ so $t_{\max }=\frac{1}{k_{1}-k_{2}} \ln \frac{k_{1}}{k_{2}}$
15. (B)
$k_{1} \ll k_{2}$
so, rate of appearance of B is much lesser than rate of dissappearance of B.
16. (B)

IA alkali metal have low IP and after loss of one electron becomes stable.
17. (C)
18. (B)
$\mathrm{Q}=$ Alkali metal $\quad \mathrm{F}=$ Fluorine

19. (8)

$$
\mathrm{P}=\frac{2}{5} \times 5+\frac{3}{5} \times 10=8 \text { torr }
$$

20. (2)
$48=\left(\frac{8}{8+x}\right) 50+\left(\frac{x}{x+8}\right) 40$
$\therefore \mathrm{x}=2$
21. (4)
$P=P_{A}^{\circ}+X_{B}\left(P_{B}^{\circ}-P_{A}^{\circ}\right)$
$99=100+x_{B}(-20) \Rightarrow x_{B}=\frac{1}{20}$
$\therefore y_{B}=\frac{80 \times \frac{1}{20}}{99}=\frac{4}{99}$
$\%$ mole $_{\mathrm{B}}$ in vapour phase $=\frac{4}{99} \times 100=4$
22. (2)

In option (I) H.C effect of $\mathrm{C}-\mathrm{D}$ bond is less than $+\mathrm{H} . \mathrm{C}$ effect of $\mathrm{C}-\mathrm{H}$ bond In option (III) and (IV) carbocation is stablised by + Reffect of OH and OCH_{3}.
23. (4)

Due to qreater extent of delocalisation of -ve charge present on oxygen atom due to three NO_{2} group.
24. (4)
option (A) donot show Gl because terminal groups lie in mutual \perp plane.
In option (E) ring is stereogenic unit because two $\mathrm{sp}^{3} \mathrm{C}$ is attached with two different atoms H and Br . So E shows Gl
25. (2)

Option A and (B) is less stable due to $+\mathrm{H} . \mathrm{C}$ effect of CH_{3} group and + Reffect of OCH_{3} group. option E is also less stable than benzyl carbanion due to localisation of -ve charge.
26. (6)
27. (1)
28. (2)
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{2.6 \times 30 \times 1000}{156 \times 250}=2$

MATHEMATICS

29. (B)

$$
f(x)= \begin{cases}x-2 k \pi ; & 2 k \pi-\frac{\pi}{2} \leq x \leq 2 k \pi+\frac{\pi}{2} \\ (2 k+1) \pi-x ; & 2 k \pi+\frac{\pi}{2}<x \leq 2 k \pi+\frac{3 \pi}{2}\end{cases}
$$

30. (B)

For, $x \in(-2-h,-2+h)$:

$$
y=\frac{1}{\ln (-x)} \Rightarrow y^{\prime}=-\left.\frac{1}{(\ln (-x))^{2}} \cdot \frac{1}{(-x)} \cdot(-1) \Rightarrow y^{\prime}\right|_{x=-2}=\frac{1}{2(\ln 2)^{2}}
$$

31. (C)

$$
a^{2} \geq 1 \Rightarrow a \in(-\infty,-1] \cup[1, \infty)
$$

32. (C)

$$
\begin{aligned}
& \\
& \log _{10}\left(\mathrm{a}^{2}-\mathrm{a}+1\right) \geq 0 \\
& \Rightarrow \mathrm{a}^{2}-\mathrm{a}+1 \geq 1 \\
& \Rightarrow \mathrm{a} \in(-\infty, 0] \cup[1, \infty)
\end{aligned}
$$

33. (B)

$$
\begin{aligned}
f^{\prime}(x) & =8 x^{3}-9(a-3) x^{2}+12 a x+a \\
f^{\prime \prime}(x) & =24 x^{2}-18(a-3) x+12 a \\
& =6 \cdot\left\{4 x^{2}-3(a-3) x+2 a\right\}
\end{aligned}
$$

$\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ has roots of opposite signs

$$
\Rightarrow \quad \mathrm{a} \in(-\infty, 0)
$$

34. (A)

$$
\alpha=2 ; \beta=1 ; \gamma=-5
$$

35. (D)

$$
\tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\tan ^{-1}\left(\frac{2}{4 r^{2}}\right)=\tan ^{-1}\left(\frac{(2 r+1)-(2 r-1)}{1+(2 r+1)(2 r-1)}\right)=\tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)
$$

Thus,

$$
\begin{aligned}
\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\sum_{r=1}^{n}\left[\tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)\right] & =\tan ^{-1}(2 n+1)-\tan ^{-1}(1) \\
& =\tan ^{-1}(2 n+1)-\frac{\pi}{4} \\
\therefore \lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)= & \lim _{n \rightarrow \infty}\left[\tan ^{-1}(2 n+1)-\frac{\pi}{4}\right] \\
& =\tan ^{-1}(\infty)-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} .
\end{aligned}
$$

36. (D)

For domain $\ell n\left(\cot ^{-1} x\right)>0$
$\Rightarrow \cot ^{-1} \mathrm{x}>1$
$\Rightarrow \mathrm{x}<\cot 1$
37. (A, D)
$f(x)=\left[\begin{array}{ll}\frac{a x^{2}+b x}{\frac{a-b-1}{2}} & \text { for }-1<x<1 \\ \frac{a+b+1}{2} & x=-1 \\ \frac{1}{x} & \text { for } x>1 \text { or } x<-1\end{array}\right.$
for continuity at $x=1$

$$
\begin{equation*}
a+b=1 \tag{1}
\end{equation*}
$$

for continuity at $x=-1$

$$
\begin{equation*}
a-b=-1 \Rightarrow a-b=-1 \tag{2}
\end{equation*}
$$

hence $\mathrm{a}=0$ and $\mathrm{b}=1$
38. (C)
$f(x)=\left(\frac{x}{2+x}\right)^{2 x}$
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(\frac{x}{2+x}\right)^{2 x}=\lim _{x \rightarrow \infty}\left(1+\frac{x}{2+x}-1\right)^{2 x}$

$$
=e^{\lim _{x \rightarrow \infty}-4\left(\frac{x}{2+x}\right)}=e^{-4}
$$

Also $\lim _{x \rightarrow 1} f(x)=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
39. (A, B)
$\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is even, periodic, unbounded \& positive $\forall \mathrm{x}$ in domain.
40. (B,C)

$$
\begin{aligned}
& \sin ^{-1}\left(a^{2} x^{2}+b^{2} y^{2}\right)+\cos ^{-1}|a x+b y|=\pi \\
& \Rightarrow a^{2} x^{2}+b^{2} y^{2}=1 \text { and } a x+b y=0 \\
& \Rightarrow 2 a x b y=-1
\end{aligned}
$$

41. (A, B)
if $m<0$, then for values of x sufficiently close to 0
$1+\frac{1}{m}<\frac{\sin x}{x}<1$
$\therefore m+1>m \frac{\sin x}{x}>m$
$\therefore\left[m \frac{\sin x}{x}\right]=m$
$\therefore \lim _{x \rightarrow 0}\left[m \frac{\sin x}{x}\right]=m$
If $m>0$, then for values of x sufficiently close to 0 , we can have
$1-\frac{1}{m}<\frac{\sin x}{x}<1$
$\therefore \mathrm{m}-1<\mathrm{m} \frac{\sin \mathrm{x}}{\mathrm{x}}<\mathrm{m}$
$\therefore \lim _{x \rightarrow 0}\left[m \frac{\sin x}{x}\right]=m-1$

For (42 to 44)
(B, C, D)

$$
\begin{aligned}
& f(x)=\lim _{n \rightarrow \infty}\left(\cos \sqrt{\frac{x}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\left(\cos \sqrt{\frac{x}{n}}-1\right)\right)^{n} \\
& =e^{-\lim _{n \rightarrow \infty} 2 \sin ^{2}\left(\frac{1}{2} \sqrt{\frac{x}{n}}\right)^{n}} \\
& =e^{-2 \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2} \sqrt{\frac{x}{n}}\right)^{2}}{\frac{1}{n}}}=e^{-\frac{1}{2} \lim _{n \rightarrow \infty}^{\frac{x}{n}} \frac{1}{n}}=e^{-\frac{x}{2}} \\
& f(x)=e^{-x / 2}, x \geq 0 \quad \text { range }=(0,1] \\
& g(x)=\lim _{n \rightarrow \infty}(1-x+x n \sqrt{e})^{n} \\
& =e^{\lim _{n \rightarrow \infty} \times \frac{\left(e^{\left(\frac{1}{n}-1\right)}\right.}{1 / n}}=e^{x} \quad \forall x \in R
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{-x / 2} \Rightarrow f^{-1}(x)=2 \ln \frac{1}{x} \quad 0<x \leq 1 \\
& g(x)=e^{x} \Rightarrow g^{-1}(x)=\ln x \\
& h(x)=\tan ^{-1}\left(g^{-1}\left(f^{-1}(x)\right)\right) \\
& \therefore \quad h(x)=\tan ^{-1}\left(\ln \left(\ln \frac{1}{x^{2}}\right)\right) \text { for } 0<x<1
\end{aligned}
$$

42. (B)

$$
\lim _{x \rightarrow 0+} \frac{\operatorname{lnf}(x)}{\ell \operatorname{lng}(x)}=\lim _{x \rightarrow 0} \frac{-x / 2}{x}=-\frac{1}{2}
$$

43. (C)
domain of $h(x)$ is $(0,1)$
44. (D)
$h(x)=\tan ^{-1}\left(\ell n\left(\ell n 1 / x^{2}\right) \quad 0<x<1\right.$
$1<\frac{1}{x^{2}}<\infty \Rightarrow \quad 0<\ln \frac{1}{x^{2}}<1$
$\therefore \quad-\infty<\ln \left(\ln \left(1 / x^{2}\right)\right)<\infty$
$\therefore \quad$ range of $\mathrm{h}(\mathrm{x})$ is $(-\pi / 2, \pi / 2)$
45. (A)
$f(x)=(x-1)^{2}-2, a=1, b=-2$
$f:[1, \infty) \rightarrow[-2, \infty)$
then $f^{-1}:[-2, \infty) \rightarrow[1, \infty), f(x)=y \Rightarrow x^{2}-2 x-(1+y)=0$
$\therefore \mathrm{x}=\frac{2 \pm \sqrt{4+4(1+\mathrm{y})}}{2}, \quad \mathrm{x}=1 \pm \sqrt{2+\mathrm{y}}$
$\because f^{-1}(y)=1+\sqrt{2+y} \Rightarrow f^{-1}(x)=1+\sqrt{2+x}$
46. (A)

For $f(|x|)=k$ to be four distinct solutions, $k \in(-2,-1)$
47. (1)

The equation of the curve is $y-e^{x y}+x=0$
$\Rightarrow \frac{d y}{d x}-e^{x y}\left(y+x \frac{d y}{d x}\right)+1=0$
$\Rightarrow \frac{d y}{d x}\left(1-x e^{x y}\right)=y e^{x y}-1$
$\Rightarrow \frac{d x}{d y}=\frac{1-x e^{x y}}{y e^{x y}-1}$
Clearly, $\frac{d x}{d y}=0$ at $(1,0)$. So, required point is $(1,0)$.
48. (1)
$f(0)=0$
49. (1)
$f(x)=\sin x+2-2 x$
$f(0)=2>0$
$\mathrm{f}(\pi / 2)=3-\pi<0$
$f^{\prime}(x)=\cos x-2<0 \quad \forall x \in R$
$\Rightarrow f(x)=0$ will have exactly one real root in $x \in\left(0, \frac{\pi}{2}\right)$
50. (1)

It is possibe only when $f(x)$ is differentiable at $x=1$ and $f^{\prime}(1) \neq 0$.

$$
\begin{array}{ll}
\Rightarrow & 1+\frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2}=-1 \Rightarrow b^{3}+b^{2}+7 b+3=0 \\
& f(b)=b^{3}+b^{2}+7 b+3 \\
\therefore & f^{\prime}(b)=3 b^{2}+2 b+7>0 \forall b \in R
\end{array}
$$

$$
\Rightarrow f(b)=0 \text { will have exactly one real root. }
$$

51. (2)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x^{4}-x^{4} \cos x^{4}+x^{20}}{x^{4}\left(e^{2 x^{4}}-1-2 x^{4}\right)}=\lim _{t \rightarrow 0} \frac{\sin t-t \cos t+t^{5}}{t\left(e^{2 t}-1-2 t\right)} \\
& \lim _{t \rightarrow 0} \frac{t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!} \cdots \cdot-t\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!} \cdots\right)+t^{5}}{t\left(1+2 t+\frac{4 t^{2}}{2!}+\frac{8 t^{3}}{3!}+\frac{16 t^{4}}{4!}+\ldots .-1-2 t\right)} \quad \lim _{t \rightarrow 0} \frac{-\frac{t^{3}}{6}+\frac{t^{3}}{2}+\frac{t^{5}}{5!}-\frac{t^{5}}{4!}+\ldots .+t^{5}}{2 t^{3}+\frac{8 t^{4}}{3!}+\ldots}=\frac{-\frac{1}{6}+\frac{1}{2}}{2}=\frac{-1+3}{12}=\frac{1}{6}
\end{aligned}
$$

52. (5)

$$
\begin{aligned}
& 3 x-7 \leq x^{2}-3 x+2<3 x-7+1 \quad \& 3 x \in Z \\
& \Rightarrow 0 \leq x^{2}-6 x+9<1 \quad \& 3 x \in Z \\
& \Rightarrow 2<x<4 \quad \& 3 x=n \text { for some } n \in Z \\
& \Rightarrow 2<\frac{n}{3}<4 \quad \& x=\frac{n}{3}, n \in Z \Rightarrow 6<n<12 \quad \& x=\frac{n}{3}, n \in Z \\
& \Rightarrow n \in\{7,8,9,10,11\} \quad \& x=\frac{n}{3}, n \in Z \Rightarrow x \in\left\{\frac{7}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{11}{3}\right\}
\end{aligned}
$$

53. (7)

Let $\mathrm{x}=\mathrm{I}+\mathrm{f} \quad 0 \leq \mathrm{f}<1$
$73 I+\left[f+\frac{1}{19}\right]+\left[f+\frac{1}{20}\right]+\ldots+\left[f+\frac{1}{91}\right]=546$
Now $546=7 \times 73+35$
$\Rightarrow I=7$
54. (3)

For $x>0, x y>1$

$$
\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \Rightarrow \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1}\left(\frac{x+y}{x y-1}\right)=\pi
$$

55. (6)
$\lim _{x \rightarrow 1}\left(1+a x+b x^{2}\right)^{\frac{c}{x-1}}=e^{3}$, For 1^{∞} form $a+b=0$
or $e^{\lim _{x \rightarrow 1} \frac{c\left(a x+b x^{2}\right)}{x-1}}=e^{3}$
or $\lim _{x \rightarrow 1} \frac{c\left(a x+b x^{2}\right)}{x-1}=3$
or $\lim _{h \rightarrow 0} \frac{c\left(a(1+h)+b(1+h)^{2}\right)}{1+h-1}=3$
or $\lim _{h \rightarrow 0} \frac{(c a+b)+(a c+2 b) \cdot h+b h^{2}}{h}=3$
or $\mathrm{ca}+\mathrm{b}=0$ and $\mathrm{ac}+2 \mathrm{~b}=3$
or $b=3$ and $a c=-3$
also, $a+b=0$, i.e; $a=-3$ and $c=1$
56. (1)
$\log _{b} a \log _{c} a+\log _{a} b \log _{c} b+\log _{a} c \log _{b} c=3$
Let $\log _{e} a=x, \quad \log _{e} b=y, \quad \log _{e} c=z$
$\Rightarrow \frac{x^{3}+y^{3}+z^{3}}{x y z}=3 \Rightarrow x^{3}+y^{3}+z^{3}=3 x y z \Rightarrow x+y+z=0$
$\Rightarrow \log _{e} a+\log _{e} b+\log _{e} c=0 \Rightarrow \log _{e} a b c=0 \Rightarrow a b c=e^{0}$
$\therefore \mathrm{abc}=1$

PHYSICS

57. (C)

Flux cannot change in a superconduction loop.
$\Delta \phi=2 \pi R^{2} . B$
Initially current was zero, so self flux was zero.
\therefore Finally $\mathrm{Li}=2 \pi R^{2} \times B$.
$i=\frac{2 \pi R^{2} \times B}{L}$
58. (A)
$U=\frac{1}{2} L I_{2}$
Rate $=\frac{\mathrm{dU}}{\mathrm{dt}}=\mathrm{LI}\left(\frac{\mathrm{dI}}{\mathrm{dt}}\right)$
At $t=0, I=0$
\therefore Rate $=0$
At $t=\infty, I=I_{0}$ but $\frac{d I}{d t}=0$, therefore, rate $=0$
59. (B)

Rate of change of flux will remain same
60. (B)

OEH is an equipotential surface, the uniform E.F. must be perpendicular to it pointing from higher to lower potential as shown.

Hence $E=\left(\frac{\hat{i}-\hat{j}}{\sqrt{2}}\right)$
$E=\frac{\left(v_{E}-v_{B}\right)}{E B}=\frac{0-(-2)}{\sqrt{2}}=\sqrt{2}$
$\therefore \vec{E}=E \cdot \vec{E}=\sqrt{2} \frac{(\hat{i}-\hat{\mathrm{j}})}{\sqrt{2}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$
61. (D)
$\mathrm{E}_{\text {in }}=\mathrm{A} \frac{\mathrm{dB}}{\mathrm{dt}}=\pi r^{2} \mathrm{~B}_{0}\left[\frac{\mathrm{~d}}{\mathrm{dt}}\left(\mathrm{e}^{-\mathrm{t}}\right)\right]=\left(\pi \mathrm{r}^{2} \mathrm{e}^{-t} \mathrm{~B}_{0}\right)$
$\therefore P=\frac{V^{2}}{R}=\frac{\pi^{2} \mathrm{r}^{4} \mathrm{e}^{-2 t} \mathrm{~B}_{0}^{2}}{\mathrm{R}}$
At $t=0 \quad \frac{\mathrm{~B}_{0}^{2} \pi^{2} \mathrm{r}^{4}}{\mathrm{R}}=\mathrm{P}$
62. (A)

Slope of $(\mathrm{I}-\mathrm{V})$ graph $=\frac{1}{\mathrm{R}}$
In CD slope is -ve So R is -ve.
63. (D)

We can writ $R=10+t$
$d Q=I d t$
$=\frac{V}{R} d t=\frac{10}{10+t} d t$
$Q=10 \int_{10}^{30} \frac{d t}{10+t}$
$Q=10$ ln 4
64. (C)

Weight will first decrease then increase
65. (A, B, C, D)
66. (A,D)
67. (A, B, D)

Work done by force $=\Delta K . E$
$\mathrm{W}_{\mathrm{E}}+\mathrm{W}_{\mathrm{B}}=\frac{1}{2} \mathrm{~m} .\left\{(2 \mathrm{~V})^{2}-\mathrm{V}^{2}\right\}$
$q E \cdot 2 a+0=\frac{1}{2} m \cdot 3 V^{2}$
$\mathrm{E}=\frac{3}{4} \frac{\mathrm{~m}}{9 \mathrm{a}} \mathrm{V}^{2}$
P = F.V
= qE.V
$=q \times \frac{3}{4} \frac{\mathrm{~m}}{9 \mathrm{a}} \cdot \mathrm{V}^{2} \cdot V$
$=\frac{3}{4} \frac{\mathrm{mv}^{3}}{\mathrm{a}}$
At Q , net force will be zero.
68. (A, C)
$\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}+\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}}{\mathrm{R}_{0^{-}-\mathrm{vt}}}\right)=0$
Where R_{0} is the initial distance of the charged particle
$Q=\frac{\mathrm{Rq}}{\mathrm{R}_{0}-\mathrm{vt}} \Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{i}=\frac{\mathrm{Rqv}}{\left(\mathrm{R}_{0}-\mathrm{Vt}\right)^{2}}$
69. (A,D)

Consider a ring of radius x and thickness dx .
Equivalent current in this ring $=\frac{\omega}{2 \pi} \times$ change on ring $=\frac{\omega}{2 \pi} \times(2 \pi x d x) \frac{\mathrm{Q}}{\pi \mathrm{R}^{2}}$

$\mathrm{dB}($ due to this ring $)=\frac{\mu}{2 \mathrm{x}}\left[\frac{\omega}{2 \pi} \frac{2 \mathrm{xQ}}{\mathrm{R}^{2}} \mathrm{dx}\right]$
$\therefore B=\int_{0}^{R} \frac{\mu_{0} \omega}{2 \pi} \frac{\mathrm{Q}}{\mathrm{R}^{2}} \mathrm{dx}=\frac{\mu_{0} \omega \mathrm{Q}}{2 \pi \mathrm{R}}$
70. (A)
$\frac{\mathrm{dB}}{\mathrm{dt}}=2 \mathrm{~T} / \mathrm{s}$
$E=-\frac{\mathrm{AdB}}{\mathrm{dt}}=-800 \times 10^{-4} \mathrm{~m}^{2} \times 2=-0.16 \mathrm{~V}$
$\mathrm{i}=\frac{0.16}{1 \Omega}=0.16 \mathrm{~A}$, clockwise
71. (B)

At $t=2 \mathrm{~s}, \quad \mathrm{~B}=4 \mathrm{~T}, \frac{\mathrm{~dB}}{\mathrm{dt}}=2 \mathrm{~T} / \mathrm{s}$
$A=20 \times 30 \mathrm{~cm}^{2}=600 \times 10^{-4} \mathrm{~m}^{2}$;
$\frac{\mathrm{dA}}{\mathrm{dt}}=-(5 \times 20) \mathrm{cm}^{2} / \mathrm{s}=-100 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{E}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-\left[\frac{\mathrm{d}(\mathrm{BA})}{\mathrm{dt}}\right]=-\left[\frac{\mathrm{BdA}}{\mathrm{dt}}+\frac{\mathrm{AdB}}{\mathrm{dt}}\right]$
$=-\left[4 \times\left(-100 \times 10^{-4}\right)+600 \times 10^{-4} \times 2\right]$
$=-[-0.04+0.120]=-0.08 \mathrm{v}$
72. (C)

At $t=2 \mathrm{~s}$, length of the wire
$=(2 \times 30 \mathrm{~cm})+20 \mathrm{~cm}=0.8 \mathrm{~m}$
Resistance of the wire $=0.8 \Omega$
Current through the rod $=\frac{0.08}{0.8}=\frac{1}{10} \mathrm{~A}$
Force on the wire $=$ il $B=\frac{1}{10} \times(0.2) \times 4=0.08 \mathrm{~N}$
same force is applied on the rod in opposite direction to make net force zero.
Solution for Q no. 73. \& 74.

$$
\begin{aligned}
v_{\mathrm{A}}= & \sqrt{2 \mathrm{as}}=\mathrm{v}(\text { say }) \\
\text { or } \quad & v=\sqrt{2\left(\frac{\mathrm{qE}}{\mathrm{~m}}\right) \mathrm{s}} \\
& =\sqrt{\frac{2 \times 1.0 \times 10 \times 1.8}{1}} \\
& =6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

in magnetic field speed does not change. Hence, particle will collide with $6 \mathrm{~m} / \mathrm{s}$.
In magnetic field path of the particle is circle. Radius of circular particle is

$$
\mathrm{r}=\frac{\mathrm{mv}}{\mathrm{~Bq}}=\frac{(1)(6)}{(5)(1)}=1.2 \mathrm{~m}
$$

$\mathrm{d}=(2.4-1.8) \mathrm{m}=0.6 \mathrm{~m}$
Since, $d<r$

$$
\begin{aligned}
& \theta=\sin ^{-1}\left(\frac{d}{r}\right)=\sin ^{-1}\left(\frac{0.6}{1.2}\right)=30^{\circ} \\
& A E=r(1-\cos \theta)=1.2\left(1-\frac{\sqrt{3}}{2}\right) \\
& =0.6(2-\sqrt{3}) \\
& F C=B F \tan \theta=\frac{0.6}{\sqrt{3}} \\
& \therefore \quad y \text {-coordinate }=A E=F C=0.6\left(2-\sqrt{3}+\frac{1}{\sqrt{3}}\right) \\
& =\frac{1.2(\sqrt{3}-1)}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

73. (B)
74. (D)
75. (5)

Let $\mathrm{I}=\mathrm{I}_{0} \sin \omega \mathrm{t}$,
where $\mathrm{I}_{0}=10, \omega=100 \pi$
then $\varepsilon=M \frac{d I}{d t}$
$=M \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{I}_{0} \sin \omega \mathrm{t}$
$=\mathrm{M}_{0} \omega \cos \omega \mathrm{t}$
$\therefore \varepsilon_{\text {max }}=\mathrm{Ml}_{0} \omega$
$5 \pi=M \times 10 \times 100 \pi$
$\mathrm{M}=5 \mathrm{mH}$
76. (2)
$\phi=B A$
$\varepsilon=\frac{\mathrm{dQ}}{\mathrm{dt}}$
$\mathrm{i}=\frac{\varepsilon}{\mathrm{R}}=\frac{1}{\mathrm{R}}\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)$
$d Q=R(i d t)$
$R_{x}($ Area of $i,-t$ graph $)$
$d Q=10 \times \frac{1}{2} \times 4 \times 0.1=2$
77. (1)
78. (3)

Magnetic induction at origin is due to one semi-infinite wire and two quarter circle of radii R and 2 R.
79. (6)

Apply wheat stone bridge
80. (1)
81. (9)
$Q_{1} \max =6 \times 10^{-3} \mathrm{C}$
$\mathrm{Q}_{2} \max =8 \times 10^{-3} \mathrm{C}$
If capacitors are connected in series charge on both the capacitor will be same.
$V_{\text {max }}=\frac{Q}{1}+\frac{Q}{2}$
$=\mathrm{Q}=6 \times 10^{-3}$
$V_{\text {max }}=9$
82. (4)

In steady state current in $A B$ and $C B$ will be same ie $2 A$
In loop BCFC
$\frac{Q}{3}+4 \times 2+\frac{Q}{6}-3 \times 2=0$
$\frac{Q}{3}+\frac{Q}{6}=-2 \frac{3 Q}{6}=-2 \quad \Rightarrow Q=-4 \quad=Q=4$
83. (4)
$q V_{a}=q V_{b}+\frac{1}{2} m v^{2}$
$2.0 \times 10^{-9} \times 9 \times 10^{9}\left[\frac{3 \times 10^{-9}}{1}-\frac{3 \times 10^{-9}}{2}\right] \times 100$
$=2.0 \times 10^{-9} \times 9 \times 10^{9}\left[-\frac{3 \times 10^{-9}}{1}+\frac{3 \times 10^{-9}}{2}\right] \times 100$

$$
+\frac{1}{2} \times 5.0 \times 10^{-9} v^{2}
$$

$10^{-9} \times 1800\left[\frac{3}{2}\right] \times 100=18 \times 10^{-9} \times 100\left[-\frac{3}{2}\right]$

$$
+\frac{1}{2} \times 5.0 \times 10^{-9} v^{2}
$$

$1800\left[\frac{3}{2}+\frac{3}{2}\right]=\frac{1}{2} \times 5.0 \times v^{2}$
$\frac{1800 \times 6}{5}=v^{2}$
$360 \times 6=v^{2}$
$6 \times 6 \times 10 \times 6=v^{2}$
$12 \sqrt{15}=v$
84. (6)

Apply conservation of energy at centre of ring A and B.

