SOLUTIONS

Mentors Eduserv All India Test Series 2018 Unit Test-4 NEET PATTERN Test Date: 23-09-2017

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No.: 0612-3223680 / 81, 7781005550 / 51

[2]	MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17
	PHYSICS
1.	(3)
	For point A and C, loop BCD shorted
	Hence, $R_{AC} = \frac{r \times 2r}{3r} = \frac{2}{3}r$
2.	(3)
	$H \propto \frac{1}{R}$
	R becomes half, so heat generate will be doubled.
3.	(1)
4.	(3)
	As $V = E - Ir$ and $I = \frac{E}{R+r} \Rightarrow r = \frac{(E-V)R}{V}$
5.	(2)
6.	(4)
	By KVL in loop $12 - 4i - 8i - 2 = 0$
	\Rightarrow i = 0
	$4\Omega = \begin{pmatrix} 1 & 4\Omega \\ 1 & 4\Omega \\ 2V & 2V \\ 2V & 2V \\ E & 2$
7.	(3)
	EMF = (4 - 1) E = 3 E. Internal resistance = 5r
8.	(4)
	$i_g(G+R) = V, 10^{-3}(400+R) = 8, R = 7600 \Omega$
9.	(2)
10.	(1)
	Current in circuit $i = \frac{n\epsilon}{nr} = \frac{\epsilon}{r}$
	The equivalent circuit of one cell is shown in figure potential difference across the cell = $V_{_A}-V_{_B}=-\epsilon+ir$
	$= -\varepsilon + \frac{\varepsilon}{r} \cdot r = 0 \qquad \qquad$
Hen!	Mentors Eduserv: Plot No136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 7544015993/6/7 7070999604/5

11. (1)

As $\mathsf{P} \neq \mathsf{R}$ and reading of galvanometer is same, wheatbridge must be balanced and in that case, I_{R} = I_{G}

$$H = \int_{0}^{a/b} l^{2}Rdt = H = \int_{0}^{a/b} (a - 2bt)^{2}Rdt = \frac{a^{3}R}{3b}$$

13. (1)
14. (2)

$$H = i^{2} RT = i^{2} \left(\frac{\rho l}{A}\right) t = \frac{i^{2} \rho V t}{A^{2}} (V = volume)$$
$$\Rightarrow H \propto \frac{1}{r^{4}}$$

$$\Rightarrow \frac{H_1}{H_2} = \left(\frac{r_2}{r_1}\right)^4 = \left(\frac{2}{1}\right)^4 = \frac{16}{1}$$

 $V_A = iR$

$$V_{B} = \left(\frac{2i}{3}\right)1.5R = iR$$

$$V_{c} = \left(\frac{i}{3}\right)(3R) = iR$$

17. (4) Let the potential of the junction be V. Then

$$\frac{6-V}{2} + \frac{4-V}{4} + \frac{8-V}{4} = 0$$

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5

Power across $110V = \frac{(110)^2}{484}$

4]

:. Power = $\frac{110 \times 110}{484}$ = 25 W 20. (2) T = 300 K to 400 K For Cu, R = R_0 (1 + α t) therefore linear For Si, exponential decrease 21. (3) $I = neAv_d$ $R = \frac{V}{neAv_d}$ $\rho = \frac{V}{\text{nev}_{d}.\ell}$ $\rho = \frac{5}{8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4} \times (0.1)}$ $\rho = 1.6 \times 10^{-15} \Omega m$ 22. (3) $R_1 = \frac{(220)^2}{25} R_2 = \frac{(220)^2}{100}$ $i = \frac{440}{(220)^2 \left(\frac{1}{25} + \frac{1}{100}\right)} = \frac{2}{220} \cdot \frac{100}{5} = \frac{2}{11}A$ $\therefore P_1 = \left(\frac{2}{11}\right)^2 \cdot \frac{(220)^2}{25} = 64W > 25W$ $P_2 = \left(\frac{2}{11}\right)^2 \cdot \frac{(220)^2}{100} = 16 \text{ W}$: bulb of 25 W - 220V will fuse. 23. (2) The equivalent circuit is a balanced wheatstone bridge. Hence, no current flows through arm BD. AB and BC are in series

[5]

[6]	MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17
	$\therefore R_{ABC} = 5 + 10 = 15 \Omega$
	AD and DC are in series
	$\therefore R_{ADC} = 10 + 20 = 30 \ \Omega$
	ABC and ADC are in parallel
	or $R_{eq} = \frac{15 \times 30}{15 + 30} = 10 \ \Omega$
	$\therefore \text{ current } I = \frac{5}{10} = 0.5A$
24.	(3)
	If internal resistance is zero, the energy sources will supply a constant current.
25.	(2)
	$Power = \frac{V^2}{R}$
	$\therefore 150 = \frac{(15)^2}{R} + \frac{(15)^2}{2} = \frac{225}{R} + \frac{225}{2} 6 \Omega$
26.	(1)
	$\mathbf{a} = \left(\frac{\mathbf{M} - \mathbf{m}}{\mathbf{M} + \mathbf{m}}\right) \mathbf{g}, \ \mathbf{s} = \frac{1}{2} \mathbf{a} t^2$
	$\Rightarrow 1.4 = \frac{1}{2} \left(\frac{M-m}{M+m} \right) g(2)^2 \Rightarrow \frac{m}{M} = \frac{13}{15}$
27.	(3)
	$\begin{array}{c} T cos \theta \\ \hline T sin \theta \\ W \end{array} R$
	$T\sin\theta = R$
	$T\cos\theta = W$
	Solving,
	$T^2 = R^2 + W^2$
Ment	Mentors Eduserv: Plot No136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 7544015993/6/7 7070999604/5

MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17 [7] $R = W \tan \theta$ Vertically $\vec{R} + \vec{T} + \vec{W} = 0$ 28. (1) $N_A = N_B$ 29. (2) $T_1 = \frac{mg}{\cos \theta}, T_2 = mg\cos \theta$ $\frac{\mathsf{T}_1}{\mathsf{T}_2} = \sec^2 \theta = 2$ 30. (2) $19.6 = \mu \times 10 \times 9.8$ $\mu = 0.2$ 31. (4) Surface between wall and A is smooth, so the system will fall with acceleration g. 32. (1) $v^2 = 2g\sin\theta\frac{l}{2}$ Also, $v^2 = -(g\sin\phi - \mu g\cos\phi)\frac{l}{2}$ $\Rightarrow -g\sin\phi + \mu g\cos\phi = g\sin\phi$ $\Rightarrow \tan \phi - \frac{\mu}{2}$ $\Rightarrow \mu = 2 \tan \phi$ 33. (2) By pulling force method, $a = \frac{(m_1 - m_2)g}{(m_1 + m_2)} = \frac{g}{8}; (given)$ $\Rightarrow \frac{m_1 - m_2}{m_1 + m_2} = \frac{1}{8} \Rightarrow \frac{m_1}{m_2} = \frac{9}{7}$

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5

42. (3) Retarding force F = - 50N Mass of the body m = 20 kg Initial speed u = 15 m/s Final speed v = 0 time t = ?

Force F = ma

or
$$a = \frac{F}{m} = -\frac{50}{20} = -2.5 \text{ m/s}^2$$

Using equation of motion v = u + at

$$\therefore 0 = 15 + (-2.5)t$$

or
$$t = \frac{15}{2.5} = 6s$$

43. (1)

44. (3)

In a uniform translatory motion, all parts of the ball have the same velocity in magnitude and direction and this velocity is constant.

The situation is shown in adjacent diagram where a body A is in uniform translatory motion

45. (1)

During upward motion,

Net force acting on pebble (F) = ma

= 0.05 × 10N

= 0.5 N (Vertically downward)

During downward motion,

Net force acting on pebble (F) = ma

= 0.5 N (Vertically downward)

At the highest point,

Net force acting on pebble (F) = ma

= 0.05 × 10N

= 0.5 N (Vertically downward)

MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17 [11]						
	CHEMISTRY					
46.	(4)					
	It is definition of isomers					
47.	(1)					
	It is definition of structural isomers					
48.	(1)					
	It is definition of chain isomers					
49.	(2)					
	Application of concept of question no 48.					
50.	(4)					
	Factual question					
51.	(4)					
	Definition of positional isomers					
52.	(4)					
	Factual question					
53.	(4)					
	No of $\pi + ring$ is known as unsaturation factor					
54.	(2)					
	$CH_{3} - CH_{2} - CH_{2} - O - CH_{3}$ $Conversion of metamers but not from (II)$ $CH_{3} - CH_{2} - O - CH_{2} - CH_{3}$ (III)					
55.	(4)					
	Ring chain isomer are compound of open chain & cyclic structure.					
56.	(4)					
	In question does not have hyper conjugable $\alpha - H$ (infact, Bridge-headed $\alpha - H$ does not participate in tautormerism.					
57.	(4)					
58.	(1)					
	Enolic cantent ∞ stability of enol					
	end of X% is aromatic					

[12]	MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17								
	end of Z% is anti aromatic end of Y% is non-aromatic								
	\therefore enolic content x > y > z								
59.	(1)								
	In basic medium less stable enol (having less $ { m a-H}$) is formed								
60.	(2)								
	In acidic medium more stable enol (having more α – H) is formed								
61.	(3)								
	Volecular weight of a sample of air								
	$=\frac{28\times4+32\times1}{5}=28.8$								
	$\therefore \text{Vapour density} = \frac{28.8}{2} = 14.4$								
62.	(2)								
	T = 127+273=400 K								
	When T is doubled in absoulute scale, volume will be doubled as 30800K or 527°C.								
63.	(1)								
	$P_1 = 1$ atm; $p_2 = 1.004$ (:. The increase in pressure is 0.4% per 1°C).								
	$T_1 = x^{\circ}C; T_2 = (x+1)^{\circ}C$								
	$\frac{P_1}{T_1} = \frac{P_2}{T_2} \text{ or } \frac{1}{x} = \frac{1.004}{x+1}$								
	x+1=1.004x or 0.004x=1								
	$x = \frac{1}{0.004} = 250K$								
64.	(1)								
	At STP, i.e., 0°C and 1 mole of He occupies 22.4 litres. Since the temperature is more than								
65	(3)								
00.	Volume of gas will be maximum at high temperature and low pressure. So, molar volume of								
	CO ₂ is maximum at 127°C and 1 atm.								
66.	(2)								
	4.4 g of CO_2 contain 6.023×10 ²² molecules								
	2.24 litre of H_2 contain 6.023×10 ²² molecules								
	\therefore Iotally, there are 1.2046×10 ²³ molecules.								
-									

MEAI	IS 2018_Unit Test-4 (NEET_Sol.)_23-09-17								
67.	(3)								
	If the weight of 5.6 litre of HF at NTP is 10g tghe MW of HF will be.								
	$\frac{22.4 \times 10}{5.6} = 40$								
	Empirical formula wt. of HF = 20								
	$\therefore \frac{40}{20} = 2$								
	Hence, molecular formula of HF is H_2F_2 .								
68.	(3)								
$\frac{V_1}{T_1}$	$=\frac{V_2}{T_2} \Rightarrow \frac{20}{100} = \frac{V_2}{300} \text{ or } \frac{20}{100} \times 300 = 60 \text{ litre}$								
	Change in volume is 60 – 20 = 40 litres.								
69.	(3)								
70.	(4)								
	$\frac{W_1}{W_2} = \sqrt{\frac{M_1}{M_2}}; \frac{2}{W_2} = \sqrt{\frac{2}{32}}$								
	$\frac{2}{W_2} = \frac{1}{4}$ or $W_2 = 8g$								
71.	(3)								
	$\frac{r_{_1}}{r_{_2}} = \sqrt{\frac{Vd_{_2}}{Vd_{_1}}} r_{_1} = \frac{V_{_1}}{t_{_1}}, r_{_2} = \frac{V_{_2}}{t_{_2}} \text{ and } V_{_{d_1}} = 11$								
	$\frac{20}{5} \times \frac{10}{V_2} = \sqrt{\frac{22}{11}} \text{ or } v_2 = \frac{20 \times 10}{5 \times \sqrt{2}} \text{ or } 20\sqrt{2}$								
72.	(3)								
	Partial pressure of argon = Total pressure × mole fraction of argon								
	\therefore The partial pressure of argon $=\frac{2}{5}$ of the total pressure.								
73.	(2)								
	When the same container is divided into compartments the pressure in all compartments will be equal though their sizes are different because $\nu \alpha n$.								
74.	(3)								

$$KE = \frac{3}{2}nRT$$
Since KE for both He and Ar are equal.

$$\frac{3}{2}n_{1}RT_{1} = \frac{3}{2}n_{2}RT_{2}$$

$$T_{1} = \frac{0.4 \times 400}{0.3} = 533 \text{ K}$$
75. (1)

$$KE = \frac{3}{2}nRT$$

$$= \frac{3}{2} \times \frac{8}{16} \times 8.314 \times 300 = 1870.6 \text{ J}$$

76. (3)

Hoope's process \rightarrow Purification of AI

Le-Blanc process \rightarrow Manufacture of Na₂CO₃

Lane's process \rightarrow Manufacture of H₂ (by passing steam over spongly iron at 773–1050K)

 $3Fe+4H_2O\rightarrow Fe_3O_4+4H_2$

Carter's process \rightarrow manufacture of basic lead carbonate.

77. (2)

Protium (P), deuterium (D) and tritium (T) are the three isotopes of hydrogen. These isotopes follow the order in different contexts as shown below

 $T_2 > D_2 > P_2$ [order of boiling point (BP)]

 $T_2 > D_2 > P_2$ [order of bond energy (BE)]

 $T_2 = D_2 = P_2$ [order of bond length (BL)]

 $T_2 < D_2 < P_2$ [order of reactivity with CI_2]

78. (2)

79. (2)

TEL (tetraatby lead) is used as antiknock agent in petrol engine. D_2O is used as moderator in nuclear reactor. H_2D_2 is used for bleaching delicate articles like Wood chair. It is also used as an antiseptic and germicide.

R–O–R (ether) is used as a solvent.

80. (4)

 $\underset{\text{Zeolite}}{\text{Na}_2} + \text{Z} + \text{M}^{\text{Z} +} \rightarrow 2\text{Na}^+ + \text{MZ}(\text{M} = \text{Ca or Mg})$

[14]

MEAI	IS 2018_Unit Test-4 (NEET_Sol.)_23-09-17 [15]								
81.	(3) Alkalie earth metal salts cause hardnes. Temporary hardness is caused by solute Ca and Mg hydrogen carbonates. Calcium and magnesium sulphates and chlorides cause permanent hardness.								
82.	(3) Degree of hardness of water is measured in terms of ppm by weight of CaCO ₃ irrespective of whether it is actually present or not								
83.	(3)								
	$ \begin{array}{c} e^{-} \\ e^{-} $								
84. 85.	(3) Semi-water gas is, in fact, a mixture of water gas $(CO+H_2)$ and producer gas $(CO+N_2)$. Its approximate composition is CO = 25.28%; N ₂ = 50.55%; H ₂ = 10 - 12%; CO ₂ = 4.5%. (3) H ₂ O ₂ can be prepared by electrolysis of 50% H ₂ SO ₄ . In this method, hydrogen is liberated at cathode								
	$H_2O_4^{}2H^+ + 2HSO_4^-$								
	At anode $2HSO_4^- \rightarrow H_2SO_4 + 2e^-$								
	$H_2S_2O_8 + 2H_2O \rightarrow 2H_2S_2O_8 + H_2O_2$								
	At cathode $2H^+ + 2e^- \rightarrow H_2^{\uparrow}$								
86.	(3)								
	$\begin{array}{c} \text{Na}_2\text{O}_2 + \text{H}_2\text{SO}_2 \text{ is prepared by Merck's process shown as byelow .} \\ \text{Na}_2\text{O}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}_2 \\ \text{Sodium} \\ \text{peroxide} \\ \end{array}$								
87.	(1) Due to electron donating property of H_2O_2 , it acts as a reducing agent in acidic as well sis in alkaline medium and gets oxidised to O_2 .								
	$HOCI + H_2O_2 \xrightarrow{H^+} H_3O^+ + CI^- + O_2$								
	On the other hand, its reaction with Mn^{2+} , Fe^{2+} and PbS, show its oxidising property in which it reduces to H_2O .								

[16]	MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17							
88.	(1)							
	'10V H_2O_2 ' means 1L of this solution will produce 10L O_2 at STP.							
	$2H_{2}O_{2} \rightarrow 2H_{2}O + O_{2}$ ^{68 g} ^{22.4L at STP}							
	\therefore 22.4 L of O ₂ is obtained from H ₂ O ₂ =68g							
	\therefore 10 L of O ₂ will be obtained from							
	$H_2O_2 = \frac{68}{22.4} \times 10 = 30.36g H_2O_2.$							
	100 mL of the given solution conains 30.36g							
	H_2O_2 and 100 mL of the given solution contains							
	$\frac{30.36 \times 100}{1000} = 3.039 \text{ H}_2\text{O}_2$							
89.	(1)							
	In the reaction							
	$\begin{array}{c} & & & & \\ & & & \\ H_2O_2 + O_3 \xrightarrow{0, -2} & \xrightarrow{+1, -2} & 0 \\ & & & H_2O & + 2O_2 \\ & & & & \\ & & & \\ & & & \\ \end{array}$							
	Since H_2O_2 oxidises O_3 into O_2 , thus it behaves as an oxidising agent.							
	Further in the reaction,							
	$ \begin{array}{c} \stackrel{+1}{H_2O_2} + \stackrel{+1}{Ag_2O} \longrightarrow \stackrel{0}{2Ag} + \stackrel{+1-2}{H_2O} + \stackrel{0}{O_2} \\ \hline \\ $							
	Here H_2O_2 reduces Ag_2O intometallic (Ag) (as oxidstion number is reducing from +1 to 0). Thus, H_2O_2 behaves as a reducing agent.							
90.	(1)							

MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17 [17]					
	BOTANY				
91.	(1)	_			
92.	(4)				
	Species \rightarrow Genus \rightarrow family \rightarrow order \rightarrow class \rightarrow division \rightarrow kingdom				
93.	(1)				
94.	(3)				
95.	(3)				
96.	(2)				
97.	(3)				
98.	(4)				
99.	(4)				
100.	(4)				
	BGA lacking membrane bound organelles because it is a prokaryote				
101.	(4)				
102.	(1)				
103.	(4)				
104.	(3)				
	Plant viruses are usually ribovira (RNA containing)				
105.	(4)				
106.	(1)				
107.	(4)				
108.	(3)				
	Mycorrhiza is formed due to association between roots and fungi, as found in Pinus.				
109.	(1)				
	Mucor, Albugo & Rhizopus blong to Phycomycetes.				
110.	(4)				
111.	(1)				
440	Unlike viruses, viroids do not nave protein capsids protecting their nucelic acid.				
112.	(4)				
113.	(3) (4)				
114.	(1)				
115.	(3) (4)				
116. 447	(4)				
117.	(4)				
118.	(4)				

[18]	MEAITS 2018_Unit Test-4 (NEET_Sol.)_23-09-17								
119.	(1)								
120.	(3)								
121.	(2)								
	Angiospermic embryosac is usually 7 celled and 8 nucleated structure.								
122.	(1)								
123.	(2)								
124.	(4)								
	Diatom cells are contained within a unique silica call wall known as a frustule								
125.	(2)								
126.	(4)								
	Bryophytes are avascularized.								
127.	(3)								
	Peristome teeth help in spore dispersal in Funaria.								
128.	(4)								
	Leaves of both Cycas & Pinus possess Transfusion tissue.								
129.	(3) 130. (3)								
131.	(4)								
132.	(4)								
133.	(2)								
	Laminaria & fucus belong to Phaeophyceae.								
134.	(4)								
	Gymnosperms lack fruit, so seeds remain unprotected.								
135.	(1)								
	ZOOLOGY								
136.	(3)								
	Renal cortex is projected towards the medulla between the medullary pyramids as columns of Bertin.								
137.	(1)								
	Juxtamedullary nephrons are only 15% of total nephrons and they have U-shaped vasa rectae around their long loop of Henle.								
138.	(4)								
	Glomerular capillaries have simple squamous endothelial cells on them while the visceral layer of Bowman's capsule contains cells having foot like projections (pedicels) on them. These cell make filtration/slit pores for filtration.								

139. (2)

The cells in afferent arteriole are called juxtaglomerular cells while in distal convoluted tubule, cells are called macula densa cells.

140. (4)

Selective secretion of H⁺, K⁺ and NH₃ and absorption of HCO₃⁻ occurs in PCT.

141. (4)

Formation of urea is a transamination deamination type of reaction.

142. (2)

Reabsorption in loop of Henle is minimum though this region plays a significant role in maintenance of high osmolarity of medullary interstitial fluid.

143. (4)

A fall in glomerular blood flow triggers the renin angiotensin aldosterone system (RAAS). ANF from right atrium of the heart inhibits RAAS.

144. (2)

145. (2)

Diabetes mellitus is the loss of glucose through urine, causing utilization of fatty acids for normal body activities and hence producing ketone bodies which are excreted through urine.

146. (2)

The porous cellophane membrane allows passage of molecules based on concentration gradient.

147. (2)

Urea from medullary interstitium enters ascending limb of loop of Henle, returning back to collecting duct.

148. (1)

Kidneys are located in the abdominal cavity between the levels of last thoracic and third lumbar vertebra close to dorsal inner wall of abdominal cavity and their inner concave surface has hilum in centre.

149. (2)

All the nephrons have their malphigian corpuscles lying in the cortical region only. Juxta medullary nephrons have a loop of Henle extending into medulla.

150. (3)

Excess monovalent ions taken in through sea water are eliminated by ionocytes while excess divalent ions are removed along with faecal matter.

151. (2)

Liver converts the break down products of haemoglobin into bile pigments - billirubin and billiverdin.

[20]					Μ	EAITS 2018_Unit	Test-4	(NEET_Sol.)_23-09-17	
152.	(1)								
	Tubular maxima is the maximum concentration of a substance upto which it will be								
450	reab	reabsorbed completely. Beyond this concentration, it starts appearing in urine.							
153.	(1)	ua artariaqua faun	d in factal life						
154	(2)		u în loelai îne.						
154.	(2) (4)								
156.	(4)								
157.	(4)								
	Capi	llary has only one	lining Tunica ir	nterna.					
158.	(2)	, , , , , , , , , , , , , , , , , , ,	Ū						
159.	(3)								
160.	(3)								
161.	(3)								
162.	(1)	163.	(1) 164.	(2)	165.	(3)	166.	(1)	
167.	(3)								
168.	(3)								
169.	(2)	170.	(2) 171.	(2)	172.	(3)	173.	(2)	
174.	(2)								
175.	(4)								
1/6.	(1)								
177.	(4) (1)		170 (1)	190	(4)				
170.	(1)		179. (1)	100.	(4)				
Montors Edusory: Plot No -126/127 Porus Lak Complex Paring Pool Crossing									
Tent Go	Patna-1, Ph. No. : 0612-3223681/2 7544015993/6/7 7070999604/5								