SOLUTIONS

Mentors Eduserv

All India Test Series 2018

Unit Test-4

NEET PATTERN Test Date: 23-09-2017

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing,
Patna-1, Ph. No. : 0612-3223680 / 81, 7781005550 / 51

PHYSICS

1. (3)

For point A and C, loop $B C D$ shorted
Hence, $R_{A C}=\frac{r \times 2 r}{3 r}=\frac{2}{3} r$
2. (3)
$H \propto \frac{1}{R}$
R becomes half, so heat generate will be doubled.
3. (1)
4. (3)

$$
\text { As } V=E-\operatorname{Ir} \text { and } I=\frac{E}{R+r} \Rightarrow r=\frac{(E-V) R}{V}
$$

5. (2)
6. (4)

By KVL in loop $12-4 i-8 i-2=0$

$$
\Rightarrow \mathrm{i}=0
$$

7. (3)

EMF $=(4-1) E=3 E$. Internal resistance $=5 r$
8. (4)

$$
\mathrm{i}_{\mathrm{g}}(\mathrm{G}+\mathrm{R})=\mathrm{V}, 10^{-3}(400+\mathrm{R})=8, \mathrm{R}=7600 \Omega
$$

9. (2)
10. (1)

Current in circuit $\mathrm{i}=\frac{\mathrm{n} \varepsilon}{\mathrm{nr}}=\frac{\varepsilon}{\mathrm{r}}$
The equivalent circuit of one cell is shown in figure potential difference across the cell $=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-\varepsilon+\mathrm{ir}$
$=-\varepsilon+\frac{\varepsilon}{r} \cdot r=0$

11. (1)

As $P \neq R$ and reading of galvanometer is same, wheatbridge must be balanced and in that case, $I_{R}=I_{G}$
12. (2)

$$
H=\int_{0}^{a / b} I^{2} R d t=H=\int_{0}^{a / b}(a-2 b t)^{2} R d t=\frac{a^{3} R}{3 b}
$$

13. (1)
14. (2)
15. (4)
$H=i^{2} R T=i^{2}\left(\frac{\rho l}{A}\right) t=\frac{i^{2} \rho V t}{A^{2}}(V=$ volume $)$
$\Rightarrow H \propto \frac{1}{r^{4}}$
$\Rightarrow \frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)^{4}=\left(\frac{2}{1}\right)^{4}=\frac{16}{1}$
16. (1)
$V_{A}=i R$
$V_{B}=\left(\frac{2 i}{3}\right) 1.5 R=i R$
$V_{C}=\left(\frac{i}{3}\right)(3 R)=i R$

17. (4)

Let the potential of the junction be V . Then
$\frac{6-\mathrm{V}}{2}+\frac{4-\mathrm{V}}{4}+\frac{8-\mathrm{V}}{4}=0$

$12-2 V+4-V+8-V=0$

$$
\begin{aligned}
24 & =4 \mathrm{~V} \\
\mathrm{~V} & =6 \mathrm{~V}
\end{aligned}
$$

18. (4)

Let R_{0} be the resistance of both conductors at $0^{\circ} \mathrm{C}$.
Let R_{1} and R_{2} be their resistane at $t^{\circ} C$, then
$R_{1}=R_{0}\left(1+\alpha_{1} t\right)$
$R_{2}=R_{0}\left(1+\alpha_{2} t\right)$
Let R_{s} be the resistance of the series combiantion of two conductors at $t^{\circ} C$, then
$R_{s}=R_{1}+R_{2}$

$$
R_{s 0}\left(1+\alpha_{s} t\right)=R_{0}\left(1+\alpha_{1} t\right)+R_{0}\left(1+\alpha_{2} t\right)
$$

where $R_{s 0}=R_{0}+R_{0}=2 R_{0}$
$\therefore 2 R_{0}\left(1+\alpha_{s} t\right)=2 R_{0}+R_{0} t\left(\alpha_{1}+\alpha_{2}\right)$

$$
2 R_{0}+2 R_{0} \alpha_{s} t=2 R_{0}+R_{0} t\left(\alpha_{1}+\alpha_{2}\right)
$$

$\therefore \alpha_{\mathrm{s}}=\frac{\alpha_{1}+\alpha_{2}}{2}$
Let R_{p} be the resistance of the parallel combination of two conductors at $t^{\circ} \mathrm{C}$. Then
19. (3)

Resistance of the bulb
$(R)=\frac{V^{2}}{P}=\frac{(220)^{2}}{100}=484 \Omega$
Power across $110 \mathrm{~V}=\frac{(110)^{2}}{484}$

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
\therefore Power $=\frac{110 \times 110}{484}=25 \mathrm{~W}$
20. (2)
$\mathrm{T}=300 \mathrm{~K}$ to 400 K
For $\mathrm{Cu}, \mathrm{R}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$ therefore linear
For Si , exponential decrease
21. (3)
$I=n e A v_{d}$
$R=\frac{V}{n e A v_{d}}$
$\rho=\frac{V}{n e v_{d} \cdot \ell}$
$\rho=\frac{5}{8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4} \times(0.1)}$
$\rho=1.6 \times 10^{-15} \Omega \mathrm{~m}$
22. (3)
$R_{1}=\frac{(220)^{2}}{25} R_{2}=\frac{(220)^{2}}{100}$
$i=\frac{440}{(220)^{2}\left(\frac{1}{25}+\frac{1}{100}\right)}=\frac{2}{220} \cdot \frac{100}{5}=\frac{2}{11} \mathrm{~A}$
$\therefore \mathrm{P}_{1}=\left(\frac{2}{11}\right)^{2} \cdot \frac{(220)^{2}}{25}=64 \mathrm{~W}>25 \mathrm{~W}$
$P_{2}=\left(\frac{2}{11}\right)^{2} \cdot \frac{(220)^{2}}{100}=16 \mathrm{~W}$
\therefore bulb of $25 \mathrm{~W}-220 \mathrm{~V}$ will fuse.
23. (2)

The equivalent circuit is a balanced wheatstone bridge.
Hence, no current flows through arm BD.
$A B$ and $B C$ are in series

6]
$\therefore \mathrm{R}_{\mathrm{ABC}}=5+10=15 \Omega$
$A D$ and $D C$ are in series
$\therefore R_{A D C}=10+20=30 \Omega$
$A B C$ and $A D C$ are in parallel
or $R_{\text {eq }}=\frac{15 \times 30}{15+30}=10 \Omega$
\therefore current $\mathrm{I}=\frac{5}{10}=0.5 \mathrm{~A}$
24. (3)

If internal resistance is zero, the energy sources will supply a constant current.
25. (2)

Power $=\frac{V^{2}}{R}$
$\therefore 150=\frac{(15)^{2}}{\mathrm{R}}+\frac{(15)^{2}}{2}=\frac{225}{\mathrm{R}}+\frac{225}{2} 6 \Omega$
26. (1)
$a=\left(\frac{M-m}{M+m}\right) g, s=\frac{1}{2} a t^{2}$
$\Rightarrow 1.4=\frac{1}{2}\left(\frac{M-m}{M+m}\right) g(2)^{2} \Rightarrow \frac{m}{M}=\frac{13}{15}$
27. (3)

$\mathrm{T} \sin \theta=\mathrm{R}$
$\mathrm{T} \cos \theta=\mathrm{W}$
Solving,
$\mathrm{T}^{2}=\mathrm{R}^{2}+\mathrm{W}^{2}$
$\mathrm{R}=\mathrm{W} \tan \theta$
Vertically

$$
\overrightarrow{\mathrm{R}}+\overrightarrow{\mathrm{T}}+\overrightarrow{\mathrm{W}}=0
$$

28. (1)
$N_{A}=N_{B}$
29. (2)
$\mathrm{T}_{1}=\frac{\mathrm{mg}}{\cos \theta}, \mathrm{T}_{2}=\mathrm{mg} \cos \theta$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\sec ^{2} \theta=2$
30. (2)
$19.6=\mu \times 10 \times 9.8$
$\mu=0.2$
31. (4)

Surface between wall and A is smooth, so the system will fall with acceleration g .
32. (1)
$\mathrm{v}^{2}=2 \mathrm{~g} \sin \theta \frac{\mathrm{l}}{2}$
Also, $\mathrm{v}^{2}=-(\mathrm{g} \sin \phi-\mu \mathrm{g} \cos \phi) \frac{\mathrm{l}}{2}$
$\Rightarrow-g \sin \phi+\mu \mathrm{g} \cos \phi=\mathrm{g} \sin \phi$
$\Rightarrow \tan \phi-\frac{\mu}{2}$
$\Rightarrow \mu=2 \tan \phi$
33. (2)

By pulling force method,
$a=\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}\right)}=\frac{g}{8} ;$ (given)

$\Rightarrow \frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{1}{8} \Rightarrow \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}}=\frac{9}{7}$
34. (3)

For the man standing in the lift,
$\vec{a}_{\mathrm{b} m}=\overrightarrow{\mathrm{a}}_{\mathrm{b}}-\overrightarrow{\mathrm{a}}_{\mathrm{m}} \Rightarrow \overrightarrow{\mathrm{a}}_{\mathrm{bm}}=(\mathrm{g}-\mathrm{a})$
$\vec{a}_{\mathrm{bm}}=\overrightarrow{\mathrm{a}}_{\mathrm{b}}-\overrightarrow{\mathrm{a}}_{\mathrm{m}} \Rightarrow \mathrm{a}_{\mathrm{bm}}=\mathrm{g}-0 \Rightarrow \mathrm{a}_{\mathrm{bm}}=\mathrm{g}$
35. (1)

Earth pulls the block by a force Mg. The block is turn exerts a force Mg on the spring of spring balance S_{1}, which therefore shows a reading of $M \mathrm{kgf}$. The spring S_{1} is massless and hence it exerts a force of Mg on the spring of spring balance S_{2} which leads to the reading of M kgf of spring balance S_{2}

36. (4)

Analysing from inclined surface frame, FBD of block
For block to remain stationary,
$\mathrm{mg} \sin \alpha=\mathrm{ma} \cos \alpha$
$\therefore \mathrm{a}=\mathrm{g} \tan \alpha$
37. (3)

For equilibrium of $\sqrt{2} \mathrm{M}$ block
$2 \mathrm{~T} \cos \theta=\sqrt{2} \mathrm{mg}, \mathrm{T}=\mathrm{Mg}, \cos \theta=\frac{1}{\sqrt{2}}, \theta=45^{\circ}$
38. (3)
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{T}=\mathrm{mg}+\mathrm{ma}$
$K x=m(g+a)$
$x=\frac{m(g+a)}{K}$
39. (4)
$2 \mathrm{~T}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{mg}-\mathrm{T}=2 \mathrm{ma}$
(1) and (2) $\Rightarrow \mathrm{a}=\frac{\mathrm{g}}{5}$
$\therefore \mathrm{a}_{\mathrm{B}}=\frac{2 \mathrm{~g}}{5}$

40. (4)
$\mathrm{a}=\frac{\mathrm{F}_{1}-\mathrm{F}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}=10 \mathrm{~ms}^{-2}$
$R-F_{2}=m_{3} a$
$\mathrm{R}=30 \mathrm{~N}$
41. (3)
$\Sigma \mathrm{F}_{\mathrm{y}}=0, \mathrm{R}=\mathrm{ma}$
$M g=\mu R=\mu m a$

$\mu=\frac{g}{a}=0.5$
42. (3)

Retarding force $\mathrm{F}=-50 \mathrm{~N}$
Mass of the body $\mathrm{m}=20 \mathrm{~kg}$
Initial speed $u=15 \mathrm{~m} / \mathrm{s}$
Final speed $v=0$
time $t=$?
Force $\mathrm{F}=\mathrm{ma}$
or $a=\frac{F}{m}=-\frac{50}{20}=-2.5 \mathrm{~m} / \mathrm{s}^{2}$
Using equation of motion $v=u+a t$
$\therefore 0=15+(-2.5) t$
or $t=\frac{15}{2.5}=6 s$
43. (1)
44. (3)

In a uniform translatory motion, all parts of the ball have the same velocity in magnitude and direction and this velocity is constant.
The situation is shown in adjacent diagram where a body A is in uniform translatory motion

45. (1)

During upward motion,
Net force acting on pebble (F) = ma

$$
\begin{aligned}
& =0.05 \times 10 \mathrm{~N} \\
& =0.5 \mathrm{~N} \quad(\text { Vertically downward })
\end{aligned}
$$

During downward motion,
Net force acting on pebble (F) $=\mathrm{ma}$

$$
\begin{aligned}
& =0.05 \times 10 \mathrm{~N} \\
& =0.5 \mathrm{~N} \text { (Vertically downward })
\end{aligned}
$$

At the highest point,
Net force acting on pebble $(F)=m a$

$$
\begin{aligned}
& =0.05 \times 10 \mathrm{~N} \\
& =0.5 \mathrm{~N} \text { (Vertically downward) }
\end{aligned}
$$

CHEMISTRY

46. (4)

It is definition of isomers
47. (1)

It is definition of structural isomers
48. (1)

It is definition of chain isomers
49. (2)

Application of concept of question no 48.
50. (4)

Factual question
51. (4)

Definition of positional isomers
52. (4)

Factual question
53. (4)

No of $\pi+$ ring is known as unsaturation factor
54. (2)

55. (4)

Ring chain isomer are compound of open chain \& cyclic structure.
56. (4)

In question does not have hyper conjugable $\alpha-\mathrm{H}$ (infact, Bridge-headed $\alpha-\mathrm{H}$ does not participate in tautormerism.
57. (4)
58. (1)

Enolic cantent \propto stability of enol
end of $X \%$ is aromatic
end of $Z \%$ is anti aromatic end of $Y \%$ is non-aromatic
$\therefore \quad$ enolic content $\mathrm{x}>\mathrm{y}>\mathrm{z}$
59. (1)

In basic medium less stable enol (having less $\alpha-H$) is formed
60. (2)

In acidic medium more stable enol (having more $\alpha-\mathrm{H}$) is formed
61. (3)

Molecular weight of a sample of air
$=\frac{28 \times 4+32 \times 1}{5}=28.8$
$\therefore \quad$ Vapour density $=\frac{28.8}{2}=14.4$
62. (2)
$\mathrm{T}=127+273=400 \mathrm{~K}$
When T is doubled in absoulute scale, volume will be doubled as 30800 K or $527^{\circ} \mathrm{C}$.
63. (1)
$\mathrm{P}_{1}=1 \mathrm{~atm} ; \mathrm{p}_{2}=1.004\left(\therefore\right.$ The increase in pressure is 0.4% per $\left.1^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{1}=\mathrm{x}^{\circ} \mathrm{C} ; \mathrm{T}_{2}=(\mathrm{x}+1)^{\circ} \mathrm{C}$
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$ or $\frac{1}{x}=\frac{1.004}{x+1}$
$x+1=1.004 x$ or $0.004 x=1$
$x=\frac{1}{0.004}=250 K$
64. (1)

At STP, i.e., $0^{\circ} \mathrm{C}$ and 1 mole of He occupies 22.4 litres. Since the temperature is more than $0^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{C}\right), 22.4$ litre of He contain less than 1 mole. So, 0.9 mole.
65. (3)

Volume of gas will be maximum at high temperature and low pressure. So, molar volume of CO_{2} is maximum at $127^{\circ} \mathrm{C}$ and 1 atm .
66. (2)
4.4 g of CO_{2} contain 6.023×10^{22} molecules
2.24 litre of H_{2} contain 6.023×10^{22} molecules
$\therefore \quad$ Totally, there are 1.2046×10^{23} molecules.
67. (3)

If the weight of 5.6 litre of HF at NTP is 10 g tghe MW of HF will be.
$\frac{22.4 \times 10}{5.6}=40$
Empirical formula wt. of $\mathrm{HF}=20$
$\therefore \quad \frac{40}{20}=2$
Hence, molecular formula of HF is $\mathrm{H}_{2} \mathrm{~F}_{2}$.
68. (3)
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \Rightarrow \frac{20}{100}=\frac{\mathrm{V}_{2}}{300}$ or $\frac{20}{100} \times 300=60$ litre
Change in volume is $60-20=40$ litres.
69. (3)
70. (4)
$\frac{W_{1}}{W_{2}}=\sqrt{\frac{M_{1}}{M_{2}}} ; \frac{2}{W_{2}}=\sqrt{\frac{2}{32}}$
$\frac{2}{W_{2}}=\frac{1}{4}$ or $W_{2}=8 \mathrm{~g}$
71. (3)
$\frac{r_{1}}{r_{2}}=\sqrt{\frac{V d_{2}}{V d_{1}}} r_{1}=\frac{V_{1}}{t_{1}}, r_{2}=\frac{V_{2}}{t_{2}}$ and $V_{d_{1}}=11$
$\frac{20}{5} \times \frac{10}{\mathrm{~V}_{2}}=\sqrt{\frac{22}{11}}$ or $\mathrm{v}_{2}=\frac{20 \times 10}{5 \times \sqrt{2}}$ or $20 \sqrt{2}$
72. (3)

Partial pressure of argon $=$ Total pressure \times mole fraction of argon
$\therefore \quad$ The partial pressure of argon $=\frac{2}{5}$ of the total pressure.
73. (2)

When the same container is divided into compartments the pressure in all compartments will be equal though their sizes are different because $v \alpha$ n.
74. (3)
$\mathrm{KE}=\frac{3}{2} \mathrm{nRT}$
Since KE for both He and Ar are equal.
$\frac{3}{2} n_{1} R T_{1}=\frac{3}{2} n_{2} R T_{2}$
$\mathrm{T}_{1}=\frac{0.4 \times 400}{0.3}=533 \mathrm{~K}$
75. (1)
$K E=\frac{3}{2} n R T$
$=\frac{3}{2} \times \frac{8}{16} \times 8.314 \times 300=1870.6 \mathrm{~J}$
76. (3)

Hoope's process \rightarrow Purification of AI
Le-Blanc process \rightarrow Manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Lane's process \rightarrow Manufacture of H_{2} (by passing steam over spongly iron at 773-1050K)
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
Carter's process \rightarrow manufacture of basic lead carbonate.
77. (2)

Protium (P), deuterium (D) and tritium (T) are the three isotopes of hydrogen. These isotopes follow the order in different contexts as shown below
$T_{2}>D_{2}>P_{2}$ [order of boiling point (BP)]
$T_{2}>D_{2}>P_{2}$ [order of bond energy (BE)]
$T_{2}=D_{2}=P_{2}$ [order of bond length (BL)]
$\mathrm{T}_{2}<\mathrm{D}_{2}<\mathrm{P}_{2}$ [order of reactivity with Cl_{2})]
78. (2)
79. (2)

TEL (tetraatby lead) is used as antiknock agent in petrol engine. $\mathrm{D}_{2} \mathrm{O}$ is used as moderator in nuclear reactor. $\mathrm{H}_{2} \mathrm{D}_{2}$ is used for bleaching delicate articles like Wood chair. It is also used as an antiseptic and germicide.
$R-O-R$ (ether) is used as a solvent.
80. (4)
$\underset{\text { Zeolite }}{\mathrm{Na}_{2}}+\mathrm{Z}+\mathrm{M}^{2+} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{MZ}(\mathrm{M}=\mathrm{Ca}$ or Mg$)$
81. (3)

Alkalie earth metal salts cause hardnes. Temporary hardness is caused by solute Ca and Mg hydrogen carbonates. Calcium and magnesium sulphates and chlorides cause permanent hardness.
82. (3)

Degree of hardness of water is measured in terms of ppm by weight of CaCO_{3} irrespective of whether it is actually present or not.
83. (3)

Para hydrogen
[Anti-parallel nuclear spins: total nuclear spin
$\left.=+\frac{1}{2}+\left(-\frac{1}{2}\right)=0\right]$
84. (3)

Semi-water gas is, in fact, a mixture of water gas $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$ and producer gas $\left(\mathrm{CO}+\mathrm{N}_{2}\right)$. Its approximate composition is $\mathrm{CO}=25.28 \% ; \mathrm{N}_{2}=50.55 \% ; \mathrm{H}_{2}=10-12 \% ; \mathrm{CO}_{2}=4.5 \%$.
85. (3)
$\mathrm{H}_{2} \mathrm{O}_{2}$ can be prepared by electrolysis of $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. In this method, hydrogen is liberated at cathode.
$\mathrm{H}_{2} \mathrm{O}_{4} 2 \mathrm{H}^{+}+2 \mathrm{HSO}_{4}^{-}$
At anode $2 \mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{e}^{-}$
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O}_{2}$
At cathode $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \uparrow$
86. (3)

In laboratory, $\mathrm{H}_{2} \mathrm{O}_{2}$ is prepared by Merck's process shown as bvelow :
$\underset{\substack{\text { Sodium } \\ \text { peroxide }}}{\mathrm{Na}_{2} \mathrm{O}_{2}}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\underset{\substack{\text { Hy2rogen } \\ \text { peroxide }}}{\mathrm{H}_{2} \mathrm{O}_{2}}$
87. (1)

Due to electron donating property of $\mathrm{H}_{2} \mathrm{O}_{2}$, it acts as a reducing agent in acidic as well sis in alkaline medium and gets oxidised to O_{2}.
$\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{H}^{+}} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
On the other hand, its reaction with $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and PbS , show its oxidising property in which it reduces to $\mathrm{H}_{2} \mathrm{O}$.
88. (1)
' $10 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$ ' means 1 L of this solution will produce $10 \mathrm{LO}_{2}$ at STP.
$\underset{689}{2 \mathrm{H}_{2} \mathrm{O}_{2}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\underset{\text { 22.4L at sTP }}{\mathrm{O}_{2}}$
$\because \quad 22.4 \mathrm{~L}$ of O_{2} is obtained from $\mathrm{H}_{2} \mathrm{O}_{2}=68 \mathrm{~g}$
$\therefore \quad 10 \mathrm{~L}$ of O_{2} will be obtained from
$\mathrm{H}_{2} \mathrm{O}_{2}=\frac{68}{22.4} \times 10=30.36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$.
100 mL of the given solution conains 30.36 g
$\mathrm{H}_{2} \mathrm{O}_{2}$ and 100 mL of the given solution contains

$$
\frac{30.36 \times 100}{1000}=3.039 \mathrm{H}_{2} \mathrm{O}_{2}
$$

89. (1)

In the reaction

Since $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises O_{3} into O_{2}, thus it behaves as an oxidising agent.
Further in the reaction,

Here $\mathrm{H}_{2} \mathrm{O}_{2}$ reduces $\mathrm{Ag}_{2} \mathrm{O}$ intometallic (Ag) (as oxidstion number is reducing from +1 to 0). Thus, $\mathrm{H}_{2} \mathrm{O}_{2}$ behaves as a reducing agent.
90. (1)

BOTANY

91. (1)
92. (4)

Species \rightarrow Genus \rightarrow family \rightarrow order \rightarrow class \rightarrow division \rightarrow kingdom
93. (1)
94. (3)
95. (3)
96. (2)
97. (3)
98. (4)
99. (4)
100. (4)

BGA lacking membrane bound organelles because it is a prokaryote
101. (4)
102. (1)
103. (4)
104. (3)

Plant viruses are usually ribovira (RNA containing)
105. (4)
106. (1)
107. (4)
108. (3)

Mycorrhiza is formed due to association between roots and fungi, as found in Pinus.
109. (1)

Mucor, Albugo \& Rhizopus blong to Phycomycetes.
110. (4)
111. (1)

Unlike viruses, Viroids do not have protein capsids protecting their nucelic acid.
112. (4)
113. (3)
114. (1)
115. (3)
116. (4)
117. (4)
118. (4)
119. (1)
120. (3)
121. (2)

Angiospermic embryosac is usually 7 celled and 8 nucleated structure.
122. (1)
123. (2)
124. (4)

Diatom cells are contained within a unique silica call wall known as a frustule
125. (2)
126. (4)

Bryophytes are avascularized.
127. (3)

Peristome teeth help in spore dispersal in Funaria.
128. (4)

Leaves of both Cycas \& Pinus possess Transfusion tissue.
129. (3)
130. (3)
131. (4)
132. (4)
133. (2)

Laminaria \& fucus belong to Phaeophyceae.
134. (4)

Gymnosperms lack fruit, so seeds remain unprotected.
135. (1)

ZOOLOGY

136. (3)

Renal cortex is projected towards the medulla between the medullary pyramids as columns of Bertin.
137. (1)

Juxtamedullary nephrons are only 15% of total nephrons and they have U-shaped vasa rectae around their long loop of Henle.
138. (4)

Glomerular capillaries have simple squamous endothelial cells on them while the visceral layer of Bowman's capsule contains cells having foot like projections (pedicels) on them. These cell make filtration/slit pores for filtration.
139. (2)

The cells in afferent arteriole are called juxtaglomerular cells while in distal convoluted tubule, cells are called macula densa cells.
140. (4)

Selective secretion of $\mathrm{H}^{+}, \mathrm{K}^{+}$and NH_{3} and absorption of HCO_{3}^{-}occurs in PCT.
141. (4)

Formation of urea is a transamination deamination type of reaction.
142. (2)

Reabsorption in loop of Henle is minimum though this region plays a significant role in maintenance of high osmolarity of medullary interstitial fluid.
143. (4)

A fall in glomerular blood flow triggers the renin angiotensin aldosterone system (RAAS). ANF from right atrium of the heart inhibits RAAS.
144. (2)
145. (2)

Diabetes mellitus is the loss of glucose through urine, causing utilization of fatty acids for normal body activities and hence producing ketone bodies which are excreted through urine.
146. (2)

The porous cellophane membrane allows passage of molecules based on concentration gradient.
147. (2)

Urea from medullary interstitium enters ascending limb of loop of Henle, returning back to collecting duct.
148. (1)

Kidneys are located in the abdominal cavity between the levels of last thoracic and third lumbar vertebra close to dorsal inner wall of abdominal cavity and their inner concave surface has hilum in centre.
149. (2)

All the nephrons have their malphigian corpuscles lying in the cortical region only. Juxta medullary nephrons have a loop of Henle extending into medulla.
150. (3)

Excess monovalent ions taken in through sea water are eliminated by ionocytes while excess divalent ions are removed along with faecal matter.
151. (2)

Liver converts the break down products of haemoglobin into bile pigments - billirubin and billiverdin.
152. (1)

Tubular maxima is the maximum concentration of a substance upto which it will be reabsorbed completely. Beyond this concentration, it starts appearing in urine.
153. (1)

Ductus arteriosus found in foetal life.
154. (2)
155. (4)
156. (4)
157. (4)

Capillary has only one lining Tunica interna.
158. (2)
159. (3)
160. (3)
161. (3)
162. (1) 163.
(1) 164.
(2) $\quad 165$. (3)
166. (1)
167. (3)
168. (3)
169. (2) 170.
(2) 171.
(2) \quad 172. (3)
173. (2)
174. (2)
175. (4)
176. (1)
177. (4)
178. (1)
179. (1) 180. (4)

