SOLUTIONS WEEKLY TEST-10 **GRS-1801 & GRKS-1801** [Top 170 selected students] (JEE ADVANCED PATTERN) Test Date: 29-07-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01 Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20 Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd., Bazar Samiti Patna-06 Call : 9569668800 | 7544015993/4/6/7

Mentors[®] Eduserv[®]

[3]

Mentors[®] Eduserv[™]

piine No. : 9569668800 | 7544015993/

[5]

. Mentors[®] Eduserv[™]

[6]

...(i)

...(ii)

CHEMISTRY

Mentors[®] Eduserv[™]

[7]

[8]
 WT-10 (ADV) GRS-1801 & GRKS-1801 [TOP 170 SELECTED STUDENTS]_29.07.2017

 27. (D)

$$C_4H_6 \longrightarrow C_4H_8O$$
 $CH_3 \longrightarrow C_4 - C \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \downarrow & \downarrow \\ Br & Br \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \leftarrow Br_2 \\ \leftarrow excess \end{pmatrix}$
 $CH_3 - CH_2 \longrightarrow C_7 - CH_3 \rightarrow CH_2 - C = CH_3 \rightarrow CH_3 - CH_2 - C - CH_3$

 28. (A), (C), (D)
 $\lambda_m = \frac{1000 \times K}{M}$, T ↑ M ↓ λ_m ↑
 Polarity of solvent ↑ no. of ions ↑ λ_m ↑

 29. (A)
 Levigation is process by which lighter earthy particle are free from heavier ore particle by washing with H₂O.

 30. (B)
 Baeyer process : NaOH Hall process : Na₂CO₃

 31. (A)
 (A)

When N is connected to SHE electron flow from N to SHE i.e. $\mathsf{E^o}_{_{oxi}}$ of N is positive

 $N^{+2} + 2e^- \rightarrow N$ $E_{N^{+2}/N} = -0.25V$

Also reduction potential of M is greater than reduction potential of N (as e⁻ flow from N to M)

$$E^{o}_{M^{+2}/M} = +0.34V, E^{o}_{N^{+2}/N} = -0.25V$$

Now, $N_{(s)} | N^{+2}(0.1M) || M^{+2}(1M) | M_{(s)}$

Ecell = E° cell -
$$\frac{0.0591}{2} \log_{10} \frac{[N^{+2}]}{[M^{+2}]}$$

= (0.34 + 0.25) - $\frac{0.0591}{2} \log_{10} \frac{0.1}{1}$
Ecell = 0.62V

. Mentors® Eduserv™

ſ	0	
L	U	

	(D) $H_2 \& O_2$ is used in fuel	cell			
38.	(C)				
	(A) — (S); (B) — (Q); (C)	— (R); (D) — (P)			
	Temp. co-efficient = $\frac{\Delta Ece}{\Delta T}$	$\frac{II}{I} = \frac{(.2123)}{308 - 288K} = -1$	× 10 ^{−3} VK ^{−1} = −1 mVK ^{−1}		
	$\Delta G = \Delta H + T \Bigg[\frac{d \Delta G^{o}}{d T} \Bigg]$				
	$\Delta S = \frac{nFdE_{cell}^0}{dt} = -1 \times 9650$	00 × 1 × 10 ^{−3} = −96.5	JK ⁻¹		
	$\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$				
	$-n \mathop{EF}_{cell}^{0} = \Delta H^{o} - T \Delta S^{o}$				
	$-1 \times 96500 \times 0.23 = \Delta H^{o} - 288(-96.5)$				
	$\Delta H = -50000 J = -50 K J$				
	E° _{cell} = .22V	$AgCI + e \rightarrow Ag^{+} + CI^{-}$	E°=.22V		
	$E^{\circ}_{cell} = \frac{.0591}{1} logKSp$	$Ag \mathop{\rightarrow} Ag^{\scriptscriptstyle +} + e$	E°=80V		
		$AgCI \rightarrow Ag^{\scriptscriptstyle +} + CI^{\scriptscriptstyle -1}$	$E^{o} =58V$		
	$\log Ksp = \frac{58}{.0591} = -9.81$				
39.	(A)				
	(A) — (Q); (B) — (R); (C)	— (P); (D) — (S)			
40.	(B)				
	(A) - Q; (B) - S; (C) - R;	(D) – P			

MATHEMATICS

 $\frac{2}{\pi}$.

[12]

$$\Rightarrow f(f(x)) = x,$$

$$\Rightarrow f(f(f(x))) = f(x)$$

$$\Rightarrow f(f(f(f(x)))) = f(f(x)) = x, \text{ and so on}$$

$$\therefore I = \int x dx = \frac{x^{2}}{2} + C$$

45. (B, D)

$$\int \frac{\cos x + x \sin x}{x(x + \cos x)} dx = \int \frac{(x + \cos x) - x + x \sin x}{x(x + \cos x)} dx$$

$$= \int \frac{1}{x} dx - \int \frac{1 - \sin x}{x + \cos x} dx = \log |x| - \log |x + \cos x| + c. \text{ Hence } f'(\frac{\pi}{2}) =$$

46. (A,C,D)

$$f(x + y) = 2^{x} f(y) + 4^{y} f(x)$$

Interchaning x and y, we get $f(x + y) = 2^{y} f(x) + 4^{x} f(y)$

$$\frac{f(x)}{4^{x} - 2^{x}} = \frac{f(y)}{4^{y} - 2^{y}} = k$$

$$f(x) = k(4^{x} - 2^{x})$$

since $r(0) = \ln 2$ we get $k = 1$

$$f(x) = 4^{x} - 2^{x}$$

47. (B, C)

$$f'(x) = e^{\tan x} (1 - \sin 2x) \ge 0 \forall x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$\therefore f \text{ is increasing in } (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$f'(x) = 0 \Rightarrow x = \frac{\pi}{4}$$

48. (B)

$$I = \int \tan^{3} x (\sec^{2} x - 1) dx$$

$$= \int \tan^{3} x \sec^{2} x dx - \int \tan^{3} x dx$$

$$= \frac{\tan^{4} x}{4} - \frac{\tan^{2} x}{2} + (n |\sec x| + C)$$

Mentors[®] Eduserv™

[14]	WT-10 (ADV) GRS-1801 & GRKS-1801 [TOP 170 SELECTED STUDENTS] _29.07.2017				
57.	(B)				
	Let Asinx + Bcosx = a $(3sinx - 4cosx) + b(3cosx + 4sinx)$				
	\Rightarrow 3a + 4b = A and - 4a + 3b = B				
	$I = ax + b \ln 3sinx - 4cosx + C$				
	If $a = 1$ and $b = 1$ then $A = 7$, $B = -1$				
	If $a = -1$ and $b = -1$, then $A = -7$. $B = 1$				
	If $a = 3$ and $b = -1$, then $A = 5$, $B = -15$				
	If $a = 2$ and $b = -2$, then $A = -2$, $B = -14$				
58.	(A)				
	1				
	(P) Let $\lim_{x \to \infty} f(x) = l$, then $l = 2l - \frac{4}{l} \implies l = 2$				
	(Q) $\lim_{h \to 0} \frac{f(h^2 + h + 2) - f(2)}{f(1 - 2h) - f(1)} = \lim_{h \to 0} \frac{f'(h^2 + h + 2)(2h + 1)}{f'(1 - 2h)(-2)} = \frac{f'(2)}{-2f'(1)} = \frac{-1}{4}$				
	(R) $\lim_{x \to 0} \left\lfloor \frac{x^3}{x - \sin x} \right\rfloor = \lim_{x \to 0} \left\lfloor \frac{x^3}{x - \left(x - \frac{x^3}{\underline{13}} + \frac{x^5}{\underline{15}} - \dots\right)} \right\rfloor = \lim_{x \to 0} \left\lfloor \frac{1}{\underline{13} - \frac{x^2}{\underline{15}} + \dots} \right\rfloor = 6$				
	(S) $\lim_{x \to 0^{+}} \frac{\sqrt{\tan x - x} - ax^{3/2}}{x^{b}} = \lim_{x \to 0^{+}} \frac{\sqrt{\frac{1}{3}x^{3} + \frac{2}{15}x^{5} + \dots - ax^{3/2}}}{x^{b}}$				
	$1(2^{-2})^{1/2}$ $1(1^{-2})$				
	$= \lim_{x \to 0^{+}} \frac{\frac{1}{\sqrt{3}} \left(1 + \frac{2}{5} x^{2} + \dots \right) - a}{b - \frac{3}{2}} = \lim_{x \to 0^{+}} \frac{\frac{1}{\sqrt{3}} \left(1 + \frac{1}{5} x^{2} + \dots \right) - a}{b - \frac{3}{2}}$				
	x 2 x 2				
	$= \lim_{x \to 0^+} \frac{\frac{1}{5\sqrt{3}} x^2 + \dots}{\frac{b - \frac{3}{2}}{2}} \qquad \left(\frac{1}{\sqrt{3}} - a = 0 \Rightarrow a = \frac{1}{\sqrt{3}}\right)$				
	$\therefore b - \frac{1}{2} = 2 \Rightarrow b = \frac{1}{2} \qquad \qquad \therefore a^{-} + b = \frac{1}{3} + \frac{1}{2} = \frac{1}{6}$				
59.	(B)				
	(P) If $\frac{\pi}{4} < x < \frac{3\pi}{8}$, then sin x > cos x				
	$\therefore \qquad \int \frac{\sin x - \cos x}{ \sin x - \cos x } dx = \int_{1.} dx = x + c$				

$$(Q) \qquad \int \frac{x^{2} dx}{(x^{3}+1)(x^{3}+2)} = \frac{1}{3} \int 3x^{2} \left(\frac{1}{x^{3}+1} - \frac{1}{x^{3}+2}\right) dx = \frac{1}{3} \ln \left|\frac{x^{3}+1}{x^{3}+2}\right| + c$$

$$\therefore f(x) = \ln |x|$$

$$(R) \qquad f(x) = \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx = \int (\tan x)^{\frac{-1}{2}} \sec^{2} x dx = 2 \sqrt{\tan x} + c$$

$$(S) \qquad \int \frac{dx}{x(n |x|)} = \ln |x| + c$$

$$\therefore f(x) = \ln |x|$$
60. (D)

$$(P) f(x) = x^{4/3} - 4x^{1/3}$$

$$f'(x) = \frac{4}{3} \left(\frac{x-1}{x^{2/3}}\right)$$

$$\frac{-1}{-1} - \frac{-1}{-1} + \frac{+}{-1}$$

$$(Q) f(x) = 5x^{2/5} - x^{2}$$

$$f'(x) = 2 \left(\frac{1-x^{3/5}}{x^{3/5}}\right) = 2 \left(\frac{\left(1-x^{1/5}\right)\left(1+x^{1/5}\right)\left(1+x^{2/5}\right)\left(1+x^{4/5}\right)}{x^{3/5}}\right)$$

$$\frac{+1}{-1} - \frac{-1}{-1} + \frac{+}{-1} - \frac{-1}{x}$$

$$(R) f(0) = \lim_{x \to 0} \frac{1}{x} \log \left(\frac{e^{x}-1}{x}\right) = \lim_{x \to 0} \frac{1}{e^{x}-1} \cdot \frac{xe^{x}-(e^{x}-1)}{x^{2}} = \frac{1}{2}$$

$$(S) f(x) = 3x^{2/3} - x^{2}$$

$$f'(x) = 2 \left(\frac{1-x^{4/3}}{x^{1/3}}\right) = 2 \frac{\left(1-x^{1/3}\right)\left(1+x^{1/3}\right)\left(1+x^{2/3}\right)}{x^{1/3}}$$

$$\frac{+1}{-1} - \frac{+1}{-1} - \frac{+1}{-1} - \frac{-1}{-1} - \frac{+1}{-1} - \frac{-1}{-1} - \frac{-$$

Mentors[®] Eduserv[®]

[15]