SOLUTIONS

WEEKLY TEST-10

GRS-1801 \& GRKS-1801

[Top 170 selected students]
(JEE ADVANCED PATTERN)

Test Date: 29-07-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01 Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20 Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

PHYSICS

1. (A, B, C)
2. (B, D)

Resistance absorbs energy at the rate of 2 W .
Potential difference across $\mathrm{AB} \Rightarrow \mathrm{V}_{\mathrm{AB}} \cdot \mathrm{I}=50 \mathrm{~W}$

$$
V_{A B}=50 \mathrm{~V}
$$

Drop across resistor is 2 V , therefore EMF of E is 48 V .
As $A B$ is absorbing energy at the rate of $50 \mathrm{~W}, 48 \mathrm{~W}$ is being absorbed by E. Thus E is on charging.
i.e. current is entering from +ve terminal of E.
3. (A, B, C, D)
$\mathrm{I}_{\mathrm{CD}}=5 \mathrm{~A}$
Using KVL
$\mathrm{E}_{1}=36 \mathrm{~V}$
$\mathrm{E}_{2}=54 \mathrm{~V}$
$\mathrm{R}=9 \Omega$

4. (A, B, C, D)

A voltmeter should draw minimum current so that current in the circuit is to be altered to minimum possible extent. Hence by using large resistance in series with galvanometer, the accuracy of the voltmeter increases. By using large resistance in series current flowing through the galvanometer decreases, therefore to produce full scale deflection in the galvanometer more potential difference is required across its terminals. Hence range of voltmeter increases.
$\therefore(A)$ and (B) are correct.
Ammeter is connected in series, so it alters the resistance of the circuit. In order to reduce this alteration shunt is connected in parallel to the galvanometer and there by accuracy of the meter is increased. On decreasing shunt resistance, more fraction of current passes through shunt. Therefore to produce full scale deflection in galvanometer more current is required. Hence range increases.
\therefore (C) and (D) are correct.
5. (A, B, C)
$I=\frac{d q}{d t}=3 e^{-t} ; t=0 \quad I=3$
let potential at P be v .

$$
\begin{aligned}
& \therefore \quad 20-\mathrm{V}=\frac{\mathrm{q}}{\mathrm{C}}+3(2) \\
& 20-\mathrm{V}=6 \text { or } \mathrm{V}=14 \mathrm{~V}
\end{aligned}
$$

Current thorough capacitive branch $=\frac{18-14}{1}=4 \mathrm{~A}$
$\therefore \quad$ Current through R in 7A \& hence $\mathrm{R}=\frac{14}{7}=2 \Omega$
6. (C, D)
$\vec{B}=K(3 \hat{\mathbf{j}}-2 \hat{k})$

So \vec{v} should be parallel or anti-parallel to \vec{B}.
7. (A, B, D)

When k_{2} is closed.

$$
\begin{aligned}
& C_{\text {eq }}=\frac{5 C}{3} \\
\therefore \quad & U_{2}=\frac{1}{2}\left(\frac{5 C}{3}\right) V^{2}=\frac{5 C V^{2}}{6} .
\end{aligned}
$$

8. (C,D)
9. $C=\frac{\in_{0}(L-y) L}{L}+\frac{k \epsilon_{0} y L}{L}=\epsilon_{0}(L-y+k y)=\frac{\epsilon_{0}}{9}\left(t^{2}-54 t+810\right)$
$\therefore \quad(C)$
10. $q=C \varepsilon, \quad i=-\frac{d q}{d t}, \quad i=9 \epsilon_{0}(54-2 t)$
$\therefore \quad$ (B)
11. (A)
12. (A)
13. (B)

In the final state the four charges will lie at the vertices of a tetrahedron with O at geometric centre.
At this state distance between any two charge, will be
$L=\frac{2 \sqrt{2}}{\sqrt{3}} \ell$

Now final potential energy of system will be

$$
\begin{aligned}
& U_{f}=\frac{\mathrm{kq}^{2}}{\mathrm{~L}} \times 3 \times 4 \times \frac{1}{2}=\frac{6 \mathrm{kq}^{2}}{\mathrm{~L}}=\frac{6 \mathrm{kq}^{2}}{\frac{2 \sqrt{2}}{\sqrt{3}} \ell}=\frac{3 \sqrt{3} \mathrm{kq}^{2}}{\sqrt{2} \ell} \\
& \mathrm{U}_{\mathrm{i}}=\frac{\mathrm{kq}^{2}}{\ell} \times 2 \times 3 \times \frac{1}{2}=\frac{3 \mathrm{kq}^{2}}{\ell}
\end{aligned}
$$

$\therefore \quad$ work done

$$
W_{\text {ext }}=U_{f}-U_{i}=\frac{3 k q^{2}}{\ell}\left[\frac{\sqrt{3}}{\sqrt{2}}-1\right]
$$

14. (C)

$$
\begin{aligned}
\mathrm{T} & =3 \mathrm{~F} \cos \theta \\
& =3 \frac{\mathrm{kq}^{2}}{\mathrm{~L}^{2}} \frac{\sqrt{2}}{\sqrt{3}} \\
& =\frac{3 \mathrm{kq}^{2}}{\left(\frac{2 \sqrt{2}}{\sqrt{3}} \ell\right)^{2}} \frac{\sqrt{2}}{\sqrt{3}}=\frac{3 \sqrt{3}}{4 \sqrt{2}} \frac{\mathrm{kq}^{2}}{\ell^{2}}
\end{aligned}
$$

15. (B)
16. (D)
17. (D)

If S_{1} is closed, then $\frac{k Q_{A}}{a}+\frac{k Q}{2 a}=0 \quad Q_{A}=-\frac{Q}{2}$
If S_{2} is closed, then $\frac{k Q_{B}}{2 a}=0$
$Q_{B}=0$
If S_{3} is closed, then $\frac{k Q}{3 a}+\frac{k Q_{C}}{3 a}=0$
$Q_{C}=-Q$
If S_{4} is closed, charge on shell B is \underline{Q}
18. (A) A-Q, B-P, C-S, D-R

$q_{A}=80 \mathrm{mC}$,
$q_{B}=-240 \mathrm{mC}$
$q_{C}=160 \mathrm{mC}$
$W_{1}=40{ }^{\prime} 80=3200 \mathrm{~mJ}$
$W_{2}=20^{\prime} 160=3200 \mathrm{~mJ}$
\therefore A-Q, B-P, C-S, D-R
19. (A) A-P,R,S; B-P,R; C-P,R,S; D-P,S
20. (B) (A-R, S) ; (B-Q,T) ; (C-P) ; (D-P)

can be transformed as

$\therefore \quad \frac{1}{\text { Reff }}=\frac{1}{R}+\frac{1}{3 R}+\frac{1}{3 R}$
$\Rightarrow \quad$ Reff $=\frac{3 \mathrm{R}}{5}=\frac{3}{5} \times 15=9 \Omega$
$\therefore \quad$ Current through cell
$\mathrm{i}=\frac{\varepsilon}{\text { Reff }}=\frac{24}{9}=\frac{8}{3} \mathrm{~A}$

Between 1 \& 2

$\therefore \quad \frac{1}{\text { Reff }}=\frac{1}{R}+\frac{1}{2 R}+\frac{3}{8 R}$
$\Rightarrow \quad \frac{1}{\text { Reff }}=\frac{8 \mathrm{R}}{15}=8 \Omega$
$\therefore \quad$ Current through cell

$$
\mathrm{i}=\frac{24 \mathrm{~V}}{8 \Omega}=3 \mathrm{~A}
$$

Between 1 \& 5

KCL at Node 2 :
$\frac{x-V}{R}+\frac{x-y}{R}+\frac{x}{12}=0$
$\Rightarrow \quad 3 x-y=V$
KCL at Node 3 :

$$
\begin{align*}
& \frac{y-V}{R}+\frac{y-x}{R}+\frac{2 y-V}{R}=0 \\
& \Rightarrow 4 y-x=2 V \tag{ii}
\end{align*}
$$

Solving (i) \& (ii)

$$
\begin{aligned}
& x=\frac{18}{33} V \\
& y=\frac{17}{11} V
\end{aligned}
$$

$\therefore \quad$ Current through cell $=\frac{22 \mathrm{~V}}{11 \Omega}=2 \mathrm{~A}$

CHEMISTRY

21. (A), (B), (C)

Higher the solvation, lower will be the ionic mobility
solvation increases in the order $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Cs}^{+}$and $\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$
The ionic moblity of H^{+}is very high due to proton jump.
Hence, correct order is :
$\mathrm{H}^{+}>\mathrm{Ci}^{+}>\mathrm{Na}^{+}>\mathrm{Li}^{+}$
$\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$
On increasing temperature, electrolytic resistance decreases, hence, electrolytic conductance increases.
Kohlrausch's law is applicable for both strong as well as weak electrolyte.
22. (A, D)
23. (C), (D)
$\mathrm{E}_{\text {cell }}$ should be +ve.
$\mathrm{E}_{\text {cell }}$ will be negative with $\mathrm{F}^{-} / \mathrm{F}_{2}$.
24. (A, B, C)
25. (A, B, C)

More the hyper-conjugation more stable is the compound and less is the $\Delta \mathrm{H}_{\mathrm{c}}$.
26. (C), (D)

All these products are formed by attack of nucleophile at more stable carbocation in $2^{\text {nd }}$ step.
27. (D)

$$
\mathrm{C}_{4} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}
$$

28. (A), (C), (D)
$\lambda_{\mathrm{m}}=\frac{1000 \times \mathrm{K}}{\mathrm{M}}, \mathrm{T} \uparrow \mathrm{M} \downarrow \lambda_{\mathrm{m}} \uparrow$
Polarity of solvent \uparrow no. of ions $\uparrow \lambda_{m} \uparrow$
29. (A)

Levigation is process by which lighter earthy particle are free from heavier ore particle by washing with $\mathrm{H}_{2} \mathrm{O}$.
30. (B)

Baeyer process : NaOH
Hall process : $\mathrm{Na}_{2} \mathrm{CO}_{3}$
31. (A)

When N is connected to SHE electron flow from N to SHE i.e. $\mathrm{E}^{\circ}{ }_{\text {oxi }}$ of N is positive
$\mathrm{N}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{N}$

$$
\mathrm{E}_{\mathrm{N}^{2} / \mathrm{N}}=-0.25 \mathrm{~V}
$$

Also reduction potential of M is greater than reduction potential of N (as e^{-}flow from N to M) $\mathrm{E}_{\mathrm{M}^{2} / \mathrm{M}}^{\circ}=+0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{N}^{2} / \mathrm{N}}^{0}=-0.25 \mathrm{~V}$

Now, $N_{(s)}\left|N^{+2}(0.1 M)\right|\left|M^{+2}(1 M)\right| M_{(s)}$
Ecell $=\mathrm{E}^{\circ}$ cell $-\frac{0.0591}{2} \log _{10} \frac{\left[\mathrm{~N}^{+2}\right]}{\left[\mathrm{M}^{+2}\right]}$
$=(0.34+0.25)-\frac{0.0591}{2} \log _{10} \frac{0.1}{1}$
Ecell $=0.62 \mathrm{~V}$
32. (D)

$$
\begin{array}{lll}
\mathrm{M}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{M} & -(1) & \mathrm{E}_{1}^{0}=? \\
\mathrm{M}^{+2}+\mathrm{e}^{-} \rightarrow \mathrm{M}^{+}-(2) & \mathrm{E}_{2}^{0}=0.15 \mathrm{~V} & \Rightarrow \Delta \mathrm{G}_{1}^{\circ}=-1 \times \mathrm{F} \times \mathrm{E}_{1}^{\circ} \\
\mathrm{M}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{M}-(3) & \mathrm{E}_{3}^{0}=0.34 \mathrm{~V} \times 0.15 & \Rightarrow \mathrm{G}_{3}^{\circ}=-2 \times \mathrm{F} \times 0.34
\end{array}
$$

add eq. (3) - eqn. (2)
$\mathrm{M}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{M} \quad \Delta \mathrm{G}_{1}^{0}=\Delta \mathrm{G}_{3}^{0}-\Delta \mathrm{G}_{2}^{0}$
$-1 \times F \times E_{1}^{0}=-2 F(0.34)-(-1 F \times 0.15)$
$\mathrm{E}_{1}^{0}=+0.68-0.15$
$E_{1}^{0}=+0.53 V$
33. (A)
34. (C)

35. (C)
36. (C)
37. (B)
$(A)-(Q) ;(B)-(R) ;(C)-(S) ;(D)-(P)$
(A) For concentration cell,

$$
\mathrm{E}_{\text {cell }}^{\circ}=0, \mathrm{E}_{\text {cell }}=-\frac{0.0591}{\mathrm{n}} \log \frac{[\text { Cation }]_{\text {anode }}}{[\text { Cation }]_{\text {cathode }}}
$$

(B) $E_{\text {red }}^{\circ}$ depend upon nature of substance
(C) Daniel cell : Galvanic cell
(D) $\mathrm{H}_{2} \& \mathrm{O}_{2}$ is used in fuel cell
38. (C)
(A) - (S); (B) - (Q); (C) - (R); (D) — (P)
Temp. co-efficient $=\frac{\Delta \text { Ecell }}{\Delta \mathrm{T}}=\frac{(.21-.23)}{308-288 \mathrm{~K}}=-1 \times 10^{-3} \mathrm{VK}^{-1}=-1 \mathrm{mVK}^{-1}$
$\Delta G=\Delta H+T\left[\frac{d \Delta G^{0}}{d T}\right]$
$\Delta \mathrm{S}=\frac{\mathrm{nFdE}}{\mathrm{cell}} \mathrm{d}=-1 \times 96500 \times 1 \times 10^{-3}=-96.5 \mathrm{JK}^{-1}$
$\Delta G^{\circ}=\Delta H^{0}-T \Delta S^{\circ}$
$-n \underset{\text { cell }}{\stackrel{0}{F}}=\Delta H^{\circ}-T \Delta S^{\circ}$
$-1 \times 96500 \times 0.23=\Delta H^{\circ}-288(-96.5)$
$\Delta \mathrm{H}=-50000 \mathrm{~J}=-50 \mathrm{KJ}$
$\mathrm{E}_{\text {cell }}^{\circ}=.22 \mathrm{~V}$
$\mathrm{AgCl}+\mathrm{e} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}$
$E^{\circ}=.22 V$
$\mathrm{E}_{\text {cell }}^{\circ}=\frac{.0591}{1} \log \mathrm{KSp} \quad \mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}$
$E^{\circ}=-.80 V$

$$
\mathrm{AgCl} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-1} \quad \mathrm{E}^{\circ}=-.58 \mathrm{~V}
$$

$\log K s p=\frac{-.58}{.0591}=-9.81$
39. (A)
(A) — (Q);
(B) - (R); (C)
(C) - (P);
(D) - (S)
40. (B)
(A) - Q;
(B) -S ;
(C) - R;
(D) $-P$

MATHEMATICS

41. (A, D)
(A) Clearly $f(-1)=0, f(0)=-1, f(1)=46$
(By using intermediate value theorem)
\Rightarrow All zeroes of the cubic $f(x)=12 x^{3}+24 x^{2}+11 x-1$ are confined in $[-1,1]$

(B) Clearly $f(x)=x-\frac{1}{x}$ is continuous as well as differentiable in the interval $\left[\frac{1}{2}, 3\right]$

Hence LMVT is applicable .
(C) Let $f(x)=x+|2(x+1)|+2|x-1|$

Then $f(x)=\left\{\begin{array}{lc}x-2(x+1)-2(x-1), & x<-1 \\ x+2(x+1)-2(x-1), & -1 \leq x \leq 1 \\ x+2(x+1)+2(x-1), & x>1\end{array}\right.$

$$
f(x)=\left\{\begin{array}{cc}
-3 x, & x<-1 \\
x+4, & -1 \leq x \leq 1 \\
5 x, & x>1
\end{array}\right.
$$

Graph of $y=f(x)$ is as shown.
Clearly $y=k$ can intersect

$y=f(x)$ at exactly one point only if $k=3$ Ans.]
(D) Let $g(x)=e^{x} f(x)$; then $g^{\prime}(x)=e^{x}\left(f(x)+f^{\prime}(x)\right) \leq e^{x}$.

Integrating with respect to x from 0 to 1 , we get
$g(1)-g(0)=\int_{0}^{1} g^{\prime}(x) d x \leq \int_{0}^{1} e^{x} d x=e-1$. But $g(1)-g(0)=e \cdot f(1)$, so we get $f(1) \leq \frac{(e-1)}{e}$
42. (B)
$x \cdot \int \frac{d x}{x}=x(\ln |x|+C)=x \ln |x|+C x$
43. (A)
$\ln (2(1+\mathrm{x}))=\mathrm{t} ; \frac{1}{1+\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
44. (B)
$f(f(x))=\left[1-\left\{\left(1-x^{n}\right)^{1 / n}\right\}^{n}\right]^{1 / n}$
$\Rightarrow \mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$,
$\Rightarrow f(f(f(x)))=f(x)$
$\Rightarrow f(f(f(f(x))))=f(f(x))=x$, and so on
$\therefore I=\int x d x=\frac{x^{2}}{2}+C$
45. (B, D)
$\int \frac{\cos x+x \sin x}{x(x+\cos x)} d x=\int \frac{(x+\cos x)-x+x \sin x}{x(x+\cos x)} d x$
$=\int \frac{1}{x} d x-\int \frac{1-\sin x}{x+\cos x} d x=\log |x|-\log |x+\cos x|+$ c. Hence $f^{\prime}\left(\frac{\pi}{2}\right)=\frac{2}{\pi}$.
46. (A,C,D)
$f(x+y)=2^{x} f(y)+4^{y} f(x)$
Interchaning x and y, we get $f(x+y)=2^{y} f(x)+4^{x} f(y)$
$\frac{f(x)}{4^{x}-2^{x}}=\frac{f(y)}{4^{y}-2^{y}}=k$
$f(x)=k\left(4^{x}-2^{x}\right)$
since $f^{\prime}(0)=\ell$ n2 we get $k=1$
$\mathrm{f}(\mathrm{x})=4^{\mathrm{x}}-2^{\mathrm{x}}$
47. (B, C)
$f^{\prime}(x)=e^{\tan x}(1-\sin 2 x) \geq 0 \quad \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\therefore \mathrm{f}$ is increasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
f^{\prime}(x)=0 \Rightarrow x=\frac{\pi}{4}
$$

48. (B)
$I=\int \tan ^{3} x\left(\sec ^{2} x-1\right) d x$
$=\int \tan ^{3} x \sec ^{2} x d x-\int \tan ^{3} x d x$
$=\frac{\tan ^{4} x}{4}-\frac{\tan ^{2} x}{2}+\ell n|\sec x|+C$
49. (D)
50. (C)

$\because \quad f "(x)$ is negative in $R-\{2\}$
$\therefore \quad f^{\prime}$ is decreasing in $(-\infty, 2)$ and in $(2, \infty)$
$f^{\prime}(-5)=0 \Rightarrow f^{\prime}(x)$ is positive in $(-\infty, 5)$ and negative in $(5,2)$
also $f^{\prime}(4)=0 \Rightarrow f^{\prime}(x)$ is positive in $(2,4)$ and negative in $(4, \infty)$
sign of f^{\prime}

$\therefore \quad \mathrm{f}$ has a local maxima at $\mathrm{x}=-5$, local minima at $\mathrm{x}=2$ and local maxima at $\mathrm{x}=4$.
51. (D)

Since $f(x)$ is symmetric about $x=1$ and it is twice differentiable. so $f^{\prime}(x)$ must have one root at $x=1$.
$f^{\prime}(x)=a(x-1)(x-\alpha)(x-\beta)=a(x-1)\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)$
Here $\frac{\alpha+\beta}{2}=1$ so $\alpha+\beta=2$
$f^{\prime}(x)=a\left(x^{3}-3 x^{2}+(\alpha \beta+2) x-\alpha \beta\right)$

$f^{\prime \prime}(2)=0 \Rightarrow \alpha \beta=-2$
$\therefore \quad$ Sum of roots of $f^{\prime}(x)=0$ is $1+\alpha+\beta$ i.e., 3 .
52. (C)
$f^{\prime}(x)=a(x-1)\left(x^{2}-2 x-2\right)=a(x-1)\left((x-1)^{2}-3\right)$
$f(x)=a\left(\frac{(x-1)^{4}}{4}-\frac{3}{2}(x-1)^{2}\right)+C$
$\because f(1)=0$ so $c=0 ; f(2)=1$ so $a=-\frac{4}{5}$
$f(x)=-\frac{4}{5}\left[\frac{(x-1)^{4}}{4}-\frac{3}{2}(x-1)^{2}\right]$
$f(3)=\frac{8}{5}$
57. (B)

Let $A \sin x+B \cos x=a(3 \sin x-4 \cos x)+b(3 \cos x+4 \sin x)$
$\Rightarrow \quad 3 a+4 b=A$ and $-4 a+3 b=B$
$I=a x+b \ln |3 \sin x-4 \cos x|+C$
If $a=1$ and $b=1$ then $A=7, B=-1$
If $a=-1$ and $b=-1$, then $A=-7, B=1$
If $a=3$ and $b=-1$, then $A=5, B=-15$
If $a=2$ and $b=-2$, then $A=-2, B=-14$
58. (A)
(P) Let $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{f}(\mathrm{x})=l$, then $l=2 l-\frac{4}{l} \quad \Rightarrow \quad l=2$
(Q) $\lim _{h \rightarrow 0} \frac{f\left(h^{2}+h+2\right)-f(2)}{f(1-2 h)-f(1)}=\lim _{h \rightarrow 0} \frac{f^{\prime}\left(h^{2}+h+2\right)(2 h+1)}{f^{\prime}(1-2 h)(-2)}=\frac{f^{\prime}(2)}{-2 f^{\prime}(1)}=\frac{-1}{4}$
(R) $\lim _{x \rightarrow 0}\left[\frac{x^{3}}{x-\sin x}\right]=\lim _{x \rightarrow 0}\left[\frac{x^{3}}{x-\left(x-\frac{x^{3}}{\underline{3}}+\frac{x^{5}}{\underline{5}}-\ldots .\right)}\right]=\lim _{x \rightarrow 0}\left[\frac{1}{\frac{1}{\boxed{3}}-\frac{x^{2}}{\underline{5}}+\ldots}\right]=6$
(S) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{\tan x-x}-a x^{3 / 2}}{x^{b}}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{\frac{1}{3} \mathrm{x}^{3}+\frac{2}{15} \mathrm{x}^{5}+\ldots}-\mathrm{ax}^{3 / 2}}{\mathrm{x}^{\mathrm{b}}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sqrt{3}}\left(1+\frac{2}{5} x^{2}+\ldots\right)^{1 / 2}-a}{x^{b-\frac{3}{2}}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sqrt{3}}\left(1+\frac{1}{5} x^{2}+\ldots\right)-a}{x^{b-\frac{3}{2}}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{5 \sqrt{3}} x^{2}+\ldots}{x^{b-\frac{3}{2}}} \quad\left(\frac{1}{\sqrt{3}}-a=0 \Rightarrow a=\frac{1}{\sqrt{3}}\right)$
$\therefore \mathrm{b}-\frac{3}{2}=2 \Rightarrow \mathrm{~b}=\frac{7}{2} \quad \therefore \mathrm{a}^{2}+\mathrm{b}=\frac{1}{3}+\frac{7}{2}=\frac{23}{6}$
59. (B)
(P) If $\frac{\pi}{4}<x<\frac{3 \pi}{8}$, then $\sin x>\cos x$

$$
\therefore \quad \int \frac{\sin x-\cos x}{|\sin x-\cos x|} d x=\int 1 . d x=x+c
$$

(Q) $\int \frac{x^{2} d x}{\left(x^{3}+1\right)\left(x^{3}+2\right)}=\frac{1}{3} \int 3 x^{2}\left(\frac{1}{x^{3}+1}-\frac{1}{x^{3}+2}\right) d x=\frac{1}{3} \ln \left|\frac{x^{3}+1}{x^{3}+2}\right|+c$
$\therefore \mathrm{f}(\mathrm{x})=\ln |\mathrm{x}|$
(R) $\quad f(x)=\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x=\int(\tan x)^{\frac{-1}{2}} \sec ^{2} x d x=2 \sqrt{\tan x}+c$
(S) $\int \frac{d x}{x \ell n|x|}=\ln |\ell n| x| |+c$
$\therefore \mathrm{f}(\mathrm{x})=\ln |\mathrm{x}|$
60. (D)
(P) $f(x)=x^{4 / 3}-4 x^{1 / 3}$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{4}{3}\left(\frac{\mathrm{x}-1}{\mathrm{x}^{2 / 3}}\right)$

(Q) $f(x)=5 x^{2 / 5}-x^{2}$

$$
f^{\prime}(x)=2\left(\frac{1-x^{8 / 5}}{x^{3 / 5}}\right)=2\left(\frac{\left(1-x^{1 / 5}\right)\left(1+x^{1 / 5}\right)\left(1+x^{2 / 5}\right)\left(1+x^{4 / 5}\right)}{x^{3 / 5}}\right)
$$

(R) $f(0)=\lim _{x \rightarrow 0} \frac{1}{x} \log \left(\frac{e^{x}-1}{x}\right)=\lim _{x \rightarrow 0} \frac{1}{\frac{e^{x}-1}{x}} \cdot \frac{x e^{x}-\left(e^{x}-1\right)}{x^{2}}=\frac{1}{2}$
(S) $f(x)=3 x^{2 / 3}-x^{2}$
$f^{\prime}(x)=2\left(\frac{1-x^{4 / 3}}{x^{1 / 3}}\right)=2 \frac{\left(1-x^{1 / 3}\right)\left(1+x^{1 / 3}\right)\left(1+x^{2 / 3}\right)}{x^{1 / 3}}$

