SOLUTIONS WEEKLY TEST-3 RBA (JEE MAIN PATTERN) Test Date: 29-07-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01 Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20 Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd., Bazar Samiti Patna-06 Call : 9569668800 | 7544015993/4/6/7

9. (C) 10. (C) mg - B = mfB - (m - m')g = (m - m')f $\Rightarrow m'g = (2m - m')f \Rightarrow m' = \frac{2mf}{g + f}$ \Rightarrow w' = $\frac{2wf}{g+f}$ **11.** 2T – Mg = Ma $T = \frac{M(g+a)}{2} = 522.5 \text{ N}$ ∴ (A) $\rightarrow F \cos \phi$ **12.** $F - F \cos \theta = MA$ $F \sin \phi$ $A = \frac{F - F \cos \phi}{M}$ / M ∴ (B) 13. From the law of refection <u>B</u> 30° 30° $\tan 30^\circ = \frac{BC}{AB} = \frac{BC}{0.2}$; $BC = 0.2 \times \frac{1}{\sqrt{3}} = 0.115$ Total no. of reflection = 30 ∴ (B) $14. \quad \sin \theta > \sin \theta_C = \frac{1}{\mu}$ $\sin\theta > \frac{1}{\frac{3/2}{4/3}}, \quad \sin\theta > \frac{8}{9}$ ∴ (A)

Mentors[®] Eduserv[™]

[3]

19. (D) $d' = \frac{d}{n_{ref}}$ $d' = \frac{4}{1.6} = 2.5$ cm $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{(\mu_2 - \mu_1)}{R}$ $\frac{1}{v} - \frac{1.6}{-4} = \frac{1-1.6}{-8}$ $v = \frac{-40}{13} = -3$ cm (Approx) hence distance between images = 8 - (3 + 2.5) = 2.5 cm 20. (A) air r + i = 90For θ max. \Rightarrow r should be max. i will be minimum for TIR minimum value of i i = c r = 90 - c..... (i) $\sin r = \sin(90 - c) = \cos c = \sqrt{1 - \sin^2 c} = \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2}$ $\sin c = \frac{n_2}{n_1}$ $\sin r = \frac{\sqrt{n_1^2 - n_2^2}}{n_1}$(ii) by snell's law $1 \times \sin \theta = n_1 \sin r = \sqrt{n_1^2 - n_2^2}$ $\theta = \sin^{-1} \sqrt{n_1^2 - n_2^2}$ Option (A) is correct.

[5]

Consider the representative rays shown in Fig. A ray entering the glass through surface A and passing along the inner side of the rod will be reflected by the outer side with the smallest angle α , at which the reflected ray is tangent to the inner side. We have to consider the conditions under which the ray will undergo total internal reflection before reaching B.

If $\alpha > \theta_c$, the critical angle, at which total internal reflection occurs, all the incident beam will emerge through the surface B. Hence we require sin $\alpha > \frac{1}{n}$.

The geometry gives $\sin \alpha = \frac{R}{(R+d)}$.

Therefore

$$\frac{\mathsf{R}}{\mathsf{R}+\mathsf{d}} \ge \frac{1}{\mathsf{n}} \; ,$$

or $\left(\frac{R}{d}\right)_{\min} = \frac{1}{n-1} = \frac{1}{1.5-1} = 2.$

Mentors[®] Eduserv[®]

[6]

or
$$d\hat{A} \perp \hat{A}$$
 or $\frac{d\hat{A}}{dt} \perp \hat{A}$
Alternate solution :
Let $\hat{A} = r\hat{e}_{t}$
 $\therefore \frac{d\hat{A}}{dt} = roe\hat{e}_{t}$ if magnitude of \hat{A} does not change.
Where \hat{e}_{t} and \hat{e}_{t} vectors in radial and normal directions.
 $\therefore \frac{d\hat{A}}{dt} \perp \hat{A}$
28. (D)
 $\underbrace{ \begin{array}{c} & & \\ &$

Mentors[®] Eduserv[™]

[8]

CHEMISTRY

31. (D)

 $\operatorname{Na}_{2}\operatorname{S}_{2}^{^{+2}}\operatorname{O}_{3} + \operatorname{Cl}_{2} + \operatorname{H}_{2}\operatorname{O} \longrightarrow \operatorname{Na}_{2} \operatorname{S}^{^{+6}}\operatorname{O}_{4} + \operatorname{H}_{2} \operatorname{S}^{^{+6}}\operatorname{O}_{4} + \operatorname{HCI}$:. x factor for $Na_2S_2O_3 = 2|(2-6)| = 8$:. equivalent weight of Na₂S₂O₃ = $\frac{Mol.wt}{8}$ 32. (B) The equiv. wt. of P₄ = $\frac{31 \times 4}{5 \times 4} = \frac{31}{5}$ \therefore 62 gm P₄ = $\frac{62 \times 5}{31}$ equiv. of P₄ = 10 equiv. of P₄ The equiv. wt. of HNO₃ = $\frac{\text{Mol.wt}}{1} = \frac{63}{1}$.: the wt. of HNO3 required = 10 × 63 = 630 gm 33. (B) The reaction are $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$ $A^{+n} + 3H_2O \rightarrow AO_3^{-} + 6H^{+} + (5-n)e^{-}$ Amount of electrons involved in the given amount of $MnO_4^- = 5 \times 1.6 \times 10^{-3}$ mol. Equating these two we get $5 \times 1.6 \times 10^{-3} = (5-n) 2.7 \times 10^{-3}$ \therefore n = 2 (approx.) 34. (A) Na₂CO₃ NaHCO₃ Let a meq. b meg. when HPh is used as indicator $Na_2CO_3+H_2SO_4 \rightarrow NaHCO_3+NaHSO_4$ then $\frac{1}{2}$ meq. of Na₂Cl₃ = meq. of H₂SO₄ $\frac{a}{2} = 2.5 \times 0.1 \times 2 \implies a = 1$ MeOH is added after the first end point the solution Contains NaHCO₃ original & NaHCO₃ produced.

Mentors[®] Eduserv[™]

[9]

 $NaHCO_3+H_2SO_4 \rightarrow H_2CO_3+NaHSO_4$ meq. of H_2SO_4 = meq. of NaHCO₃ original + meq. of NaHCO₃ produced $2.5 \times 0.2 \times 2 = b + 1/2$ meq. of Na₂CO₃ = b + a/2b + a/2 = 1b = 1 - 0.5 = 0.5wt of Na₂CO₃/lit = a × 10⁻³ × $\frac{106}{2}$ × $\frac{1}{10}$ × 1000 $= 1 \times \frac{53}{10} = 5.3 \text{ gm}$ wt of NaHCO₃/lit = b × 10⁻³ ×84 × $\frac{1}{10}$ × 1000 = 4.2 gm 35. (B) Mass of HCO_3^- in 1 kg or 10⁶ mg water = 244 mg Millimoles of HCO₃⁻ = $\frac{244}{61}$ = 4 $2HCO_3^- + CaO \longrightarrow CaCO_3 + H_2O + CO_2 + 2e^$ millimoles of CaO = 2 mass of CaO = $56 \times 2 = 112$ mg 36. (A) Molecular mass of chloride of metal = weight of 22,400 ml vapour of metal at STP $= \frac{0.72 \times 22,400}{100} = 161.28g$ 100g of metal chloride contains = 65.5 g chloride $\therefore 161.28 \text{g metal chloride contains} = \frac{65.5 \times 161.28}{100} = 105.6 \text{g}$ Therefore, the number of mole of chlorine atoms per mole of metal chloride = 105.6/35.5 = 3 Hence the molecular formula of metal chloride is MCl₃ 37. (B) Milli eq. of HCl initially = $10 \times 0.5 = 5$ Milli eq. of NaOH consumed = Milli eq. of HCl in excess $= 10 \times 0.2 = 2$

 \therefore Milli eq. of HCl consumed = Milli eq. of Ba(OH)₂ = 5-2=3 \therefore eq. of Ba(OH)₂ $= 3/1000 = 3 \times 10^{-3}$ Mass of Ba(OH)₂ = $3 \times 10^{-3} \times (171/2) = 0.2565$ g. % Ba(OH)₂ = (0.2565/2) \times 100 = 12.8% 38. (C) Milli equivalents of HCl = N × V (ml) = $\frac{1 \times 40}{10} = 4$ Milli equivalents of KOH = N × V (ml) = $\frac{1 \times 60}{20}$ = 3 One milli equivalent of an acid neutralizes one milli equivalent of a base Milli equivalent of HCI left = 4 - 3 = 1Total volume of the solution = 40 + 60 = 100 mMilli equivalents of HCI $= N \times V (ml)$ $1 = N \times 100$ Normality (N) of HCI left in solution = 0.01 Salt formed = Milli equivalent of acid or base neutralized Milli equivalents of the salt formed = $N \times V$ (ml) $3 = N \times 100$ Normality (N) of salt formed = 0.0339. (A) Meq equivalent for KMnO4 is $300 \times (1/12) = 25$ Meq for H_2O_2 is 25 Normality = 25/20 = 1.25N volume stenght = $5.6 \times 1.25 = 7$ 40. (A) 41. (C) $\begin{array}{ccc} & & & \text{Br} \\ 5 & \parallel & \parallel & 2 \\ H_3C - C - C - C H - C H - C O O H \\ 4 & & H_4 \\ & & H_4$ 42. **(B)** $\begin{array}{c} \mathsf{CHO}\,\mathsf{CONH}_2\\ \mathsf{H}_3\overset{6}{\mathsf{C}}-\overset{5}{\mathsf{C}}\mathsf{H}-\overset{4}{\mathsf{CH}}-\overset{3}{\mathsf{CH}}\overset{2}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{COOH}}\\ \mathsf{H}_3\overset{6}{\mathsf{C}}-\overset{5}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{COOH}}\\ \mathsf{H}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{COOH}}\\ \mathsf{H}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}\\ \mathsf{H}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}\\ \mathsf{H}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}-\overset{1}{\mathsf{CH}}\\ \mathsf{H}-\overset{1}{\mathsf{CH}}-\overset{1}$

Mentors[®] Eduserv[®]

[11]

[12]	W1-3 (Main) RBA_29.07.2017
43.	(C)
	$CI - C - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - COOH - CH_{3} - CH_{3} - CH_{3} - COOH - CH_{3} - CH_$
44.	(C)
	$ \begin{array}{c} \overset{1}{C}ONH_{2}\\NH_{2}\overset{5}{C}O\overset{4}{-C}H_{2}\overset{3}{-C}H_{2}\overset{2}{-C}H_{-}CH_{2}\\CH_{3}\overset{-}{-C}H_{2}\overset{-}{C}H_{2}\end{array} $
45.	(C)
	$ \begin{array}{c} {}^{1}_{C}H_{3}-\overset{2}{C}H-\overset{3}{C}H-\overset{4}{C}H_{3} & 3 \text{-Methylbutan-2-ol} \\ OH CH_{3} & \end{array} $
46.	(A)
47.	(C)
	More stable resonating structure contributed higher in R.S.
48.	(B)
	Lone pair of electrons of $H_2 C = \ddot{N} - CH_3$ is in sp ² hybrid orbital.
49.	(A)
	Due to delocalization of π electron in benzene.
50.	(A)
	In resonance position of atoms does not change.
51.	(A)
52.	(B)
53.	(A)
54.	(D)
55. 56	
50. 57	
57.	Oxide and hydroxide of Zn Al Be. Phare amphoteric
58.	(D)
59.	(A)
60.	(B)
	Option (B). is not correct due to same reason as in above question

MATHEMATICS

61. (D) $f(x) + f(1-x) = \frac{1}{27}$ $=\frac{1}{27}\times54=2$ 62. (B) Odd Extension from [0, 1] to [-1, 1] means the function which satisfies the condition f(-x) = -f(x). Now |-x| = |x| $f(-x) = x^2 - x - \sin x + \log (1 + |x|)$ $= -(-x^{2} + x + \sin x - \log (1 + |x|))$.: (b) is correct. 63. (B) $f(x) = \alpha + 5x - x^2 = \alpha + \frac{25}{4} - \left(x - \frac{5}{2}\right)^2 \implies \alpha + \frac{25}{4} = 5$ 64. (C) $\left\lceil \sqrt{p^2 + 1} \right\rceil = p \Longrightarrow p + r \le \sqrt{p^2 + q}$ \Rightarrow r² + 2pr \leq q < (r² + 2pr) + (2p + 2r + 1) Hence q can take '2p + 2r + 1' different values. 65. (D) Let equation of AB be y = x + a \therefore A(1 – a, 1) and B(2, 2 + a) ... equation of AD is y - 1 = -1 (x - 1 + a)∴ D (- 2, 4 - a) Let C(h,k) \Rightarrow h + 1 - a = 2 - 2 \Rightarrow h = a - 1 and k + 1 = 2 + a + 4 – a _2 \Rightarrow k = 5 _1 \therefore Locus of C(h,k) is y = 5 66. (D) $tan(180^{\circ} - \theta) = slope of AB = -3$

Mentors[®] Eduserv[®]

[13]

$\therefore \frac{OC}{AC} = \tan \theta, \frac{OC}{BC} = \cot \theta$ $\Rightarrow \frac{BC}{AC} = \frac{\tan \theta}{\cot \theta} = \tan^2 \theta = 9$ Let A(a, 0), B(0, b) and O(0, 0) are vertices of a right angled triangle, then vertices of the triangle made by reflection of A,B,O into opposite sides will be A'(-a,0),B'(0,-b) and O' $\left(\frac{2ab^2}{a^2+b^2},\frac{2a^2b}{a^2+b^2}\right)$. Then the value k is 3. Graph of f(x) is given by <u>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 1</u> Therefore period of f(x) is 6 and |f(x)| is 1 \Rightarrow T₁² + T₂² = 37 y t

- (i) P = 0 then it has infinite solution
- (ii) if -4 < P < 0 or 0 < P < 4 then it intersect at 2 points
- (iii) P > 4 or P < -4 then it has only one solution

70. (D)

69. (B)

When

(1997, 0) lies on y = mx + c

$$\Rightarrow$$
 0 = 1997m + c \Rightarrow c = -1997 m

 \Rightarrow mc = -1997 m² \leq 0

which is not possible.

Mentors[®] Eduserv[®]

[14]

67. (C)

68. (A)

 \therefore tan $\theta = 3$

71. (C) f(x - c) = q(x) = -q(-x)(:: g(x) is odd)= -f(-x-c) = -f(x+c)(:: f is even) \therefore f(x+c) = -f(x-c) \Rightarrow f(x+2c) = -f(x+c-c) = -f(x) \Rightarrow f(x+4c) = -f(x+2c) = -(-f(x)) = f(x) \Rightarrow f is periodic with period 4c. 72. (C) $f(x) = \left| 4 \frac{(\sqrt{\cos x} - \sqrt{\sin x})(\sqrt{\cos x} + \sqrt{\sin x})}{(\cos x + \sin x)} \right| \text{ is defined only if } \cos x \ge 0, \text{ sinx} \ge 0$ Therefore, x lies in first quadrant only. $f(x) = \left| 4 \frac{(\cos x - \sin x)}{(\cos x + \sin x)} \right| = \left| 4 \tan \left(\frac{\pi}{4} - x \right) \right| = \left| 4 \tan \left(x - \frac{\pi}{4} \right) \right|$ Now, $0 \le x \le \frac{\pi}{2}$ or $-\frac{\pi}{4} \le \mathbf{X} - \frac{\pi}{4} \le \frac{\pi}{4}$ or $-1 \le \tan\left(x - \frac{\pi}{4}\right) \le 1$ or $-4 \le 4 \tan\left(x - \frac{\pi}{4}\right) \le 4$ $0 \leq \left| 4 \tan \left(x - \frac{\pi}{4} \right) \right| \leq 4$ 73. (C) 74. (A) f(x) is defined if $\log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} > 0$ $\Rightarrow \log_{|\sin x|} \left(\frac{x^2 - 8x + 23}{8} \right) > 0 \left\{ as \frac{3}{\log_2 |\sin x|} = \frac{\log_2 8}{\log_2 |\sin x|} = \log_{|\sin x|} 8 \right\}$ \therefore $|\sin x| \neq 0,1$ and $\frac{x^2 - 8x + 23}{9} < 1$

$$\left\{ as | sinx | < 1 \implies \log_{|sinx|} a > 0 \implies a < 1 \right\}$$

Now,
$$\frac{x^2 - 8x + 23}{8} < 1 \Longrightarrow x^2 - 8x + 15 < 0$$

$$\therefore \quad \mathbf{x} \in (3, 5) - \left\{ \pi, \frac{3\pi}{2} \right\}$$

Hence domain of a function

$$= (3,\pi) \cup \left(\pi,\frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2},5\right)$$

75. (D)

Minimum value of |PA - PB| is zero. It can be attained, if PA = PB. that means 'P' must lie on the right bisector of AB.

Equation of right bisector of AB is $y - \frac{1}{2} = 2(x - 1)$ i.e., $y = 2x - \frac{3}{2}$

Solving with given line, we get $P \equiv \left(-\frac{9}{20}, -\frac{12}{5}\right)$

76. (A)

Extremities of the given diagonal are (4, 0) and (0, 6)

$$\Rightarrow$$
 slope of this diagonal = $-\frac{3}{2}$

 \Rightarrow slope of other diagonal = $\frac{2}{3}$

⇒ equation of the other diagonal is $\frac{x-2}{\frac{3}{\sqrt{13}}} = \frac{y-3}{\frac{2}{\sqrt{13}}} = r$

for the extermities of the diagonal r = $\pm \sqrt{13}$

 \Rightarrow x - 2 = ±3, y - 3 = ±2 \Rightarrow x = 5, -1 and y = 5, 1

 \Rightarrow the extremities of the diagonal are (5, 5), (-1, 1).

77. (D)

 $\cdot\cdot$ L₁, L₂, L₃ are 3 non-concurrent lines

 \therefore A triangle will be formed by the lines

:. Incentre and 3-ex-centres are the points which are equidistant from L_1 , L_2 and L_3 Hence (D) is the correct answer.

Mentors[®] Eduserv[™]

[16]

78. (A) 3x + 4y = 9, y = mx + 1 $3x + 4(mx + 1) = 9 \Rightarrow x = \frac{5}{(3 + 4m)}$ Since $x \in I \Rightarrow 3 + 4m = -1, 1, 5, -5 \Rightarrow m = -1, -2$ 79. (D) 'm' of PS = $\frac{1-2}{\frac{13}{2}-2} = -\frac{2}{9}$ Equation to parallel line through (1, -1) is $y + 1 = -\frac{2}{9}(x - 1)$ 2x + 9y + 7 = 0. 80. (B) $y = \frac{x-1}{x^2 - 3x + 3}$ \Rightarrow x²y - 3xy + 3y = x - 1 $\Rightarrow x^2y - x(3y + 1) + 3y + 1 = 0$ ∴ D≥0 $\Rightarrow (3y+1)^2 - 4y(3y+1) \ge 0 \Rightarrow -3y^2 + 2y + 1 \ge 0$ $\Rightarrow 3y^2 - 2y - 1 \le 0 \quad \Rightarrow \quad y^2 - \frac{2y}{3} - \frac{1}{3} \le 0$ $\Rightarrow \left(y - \frac{1}{3}\right)^2 - \frac{1}{9} - \frac{1}{3} \le 0 \quad \Rightarrow \left(y - \frac{1}{3}\right)^2 \le \frac{4}{9} \quad \Rightarrow \quad -\frac{2}{3} \le y - \frac{1}{3} \le \frac{2}{3}$ $\therefore \quad -\frac{1}{3} \le y \le 1$ \therefore $y \in \left[-\frac{1}{3}, 1\right]$

[17]

[18] WT-3 (Main) RBA_29.07.2017 81. (B) Here $A \equiv (2,0), B \equiv (\sqrt{5},0)$ $C \equiv (0, \sqrt{5}), D \equiv (0, 1)$ $\mathsf{E} \equiv \left(\frac{2}{1+2m}, \frac{2m}{1+2m}\right) \text{ and } \mathsf{F} \equiv \left(\frac{\sqrt{5}}{1+m}, \frac{\sqrt{5m}}{1+m}\right).$ Г Now, $2 \times ar(\Box ABFE) = ar(\Box ABCD)$ $\Rightarrow 2\{ar(\triangle OBF) - ar(\triangle OAE)\} = ar(\triangle OBC) - ar(\triangle OAD)$ $\Rightarrow 2\left\{\frac{1}{2} \times \sqrt{5} \times \frac{\sqrt{5}m}{1+m} - \frac{1}{2} \times 2 \times \frac{2m}{1+2m}\right\} = \frac{1}{2} \times \sqrt{5} \times \sqrt{5} - \frac{1}{2} \times 2 \times 1$ $\implies m = \frac{3}{2} \qquad (\because m > 0)$ 82. (A) In an equilateral triangle the orthocentre and the centroid are 0 the same. OPQ is the equilateral triangle in which $OC \perp PQ$. Clearly, the point H which divides OC internally in the ratio 2:1 is the orthocentre. Η

Clearly, OC =
$$\frac{1}{\sqrt{2}}$$
. So, OH = $\frac{2}{3} \times \frac{1}{\sqrt{2}}$

$$\therefore \quad H = \left(\frac{2}{3\sqrt{2}}\cos 45^\circ, \frac{2}{3\sqrt{2}}\sin 45^\circ\right)$$

83. (D)

Orthocentre of triangle BCH is the vertex A(-1, 0).

84. (C)

It is obvious that a, b and c are the roots of the equation $mt^3 + (I - p)t - kq = 0$, where (p, q) is the point of concurrency.

Obviously sum of roots = a + b + c = 0

$$\Rightarrow a^3 + b^3 + c^3 = 3abc$$

85. (B)

f(f(x)) = x

Mentors[®] Eduserv[™]

P

C

$$\begin{aligned} & \frac{a}{c} \left(\frac{ax+b}{cx+d}\right) + b}{c\left(\frac{ax+b}{cx+d}\right) + d} = x \\ & c\left(a+d\right)x^2 + \left(d^2 - a^2\right)x - b\left(a+d\right) = 0 \\ & \Rightarrow a + d = 0 \Rightarrow a = -d \\ & \text{Now}, f(1) = 1 \Rightarrow c = 2a + b. \\ & & f(5) = 5 \Rightarrow 25c = 10a + b \\ & & \text{hence } a = 3c \Rightarrow b = -5c \\ & \therefore f(x) = \frac{3x-5}{x-3} \end{aligned}$$
86. (A)
xy > 0 \Rightarrow P either lies in first quadrant or in third quadrant.
x + y < 1 \Rightarrow P lies below line x + y = 1
87. (C)
Let A₁ be the reflection of A in y = x
A₁ (4, 3)
Now PA + PB = A₁P + PB
which is minimum if A₁, P, B are collinear.
Equation of A₁B is 3y = 10x - 31
Solving it with y = x, we get P\left(\frac{31}{7}, \frac{31}{7}\right)
88. (C)
f(x) + f(x + 1) + f(x + 2) + ... + f(x + 2015) = 0
f(x + 1) + f(x + 2) + ... + f(x + 2015) + f(x + 2016) = 0
substracting we get
 $\Rightarrow f(x + 2016) = f(x) \forall x \in R$
Period of f(x) is 2016

[19]

[20]		WT-3 (Main) RBA_29.07.2017
89.	(D)	
	Use $\frac{x^2-5x+6}{x^2+x+1} > 0 \implies x \in (-\infty,2) \cup (3,\infty)$	
	and $[x^2 - 1] > 0 \implies x \in (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty)$	
90.	(A)	
	f(7) + f(-7) = -10	
	or, $f(7) = -17$	
	or, $f(7) + 17 \cos x = -17 + 17 \cos x$	
	which has the range [-34, 0]	
Mento	Mentors Eduserv: Parus Lok Complex, Boring F Helpline No.: 9569668800 754401	Road Crossing, Patna-1 L5993/4/6/7