# SOLUTIONS 

# WEEKLY TEST-3 

## RBA

# (JEE MAIN PATTERN) <br> <br> Test Date: 29-07-2017 

 <br> <br> Test Date: 29-07-2017}


Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

## PHYSICS

1. (A)
2. (D)
3. [B]

4. (C)
5. (D)
6. (A)
7. (A)

$$
\begin{aligned}
& T=\frac{2 m_{1} m_{2}(g+a)}{m_{1}+m_{2}}, \\
& T=\frac{2 \frac{w_{1}}{g} \cdot \frac{w_{2}}{g}(g+g)}{\frac{w_{1}}{g}+\frac{w_{2}}{g}} \Rightarrow T=\frac{4 w_{1} w_{2}}{\left(w_{1}+w_{2}\right)}
\end{aligned}
$$


8. If $m_{1}$ remains at rest

$$
\begin{equation*}
2 T=m_{1} g \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
T=\frac{2 m_{2} m_{3} g}{m_{1}+m_{2}} \tag{ii}
\end{equation*}
$$

From (i) and (ii)

$$
\begin{aligned}
& \frac{4 m_{2} m_{2} g}{m_{1}+m_{2}}=m_{1} g \\
& \frac{1}{m_{1}}=\frac{m_{1}+m_{2}}{4 m_{2} m_{3}}, \quad \frac{4}{m_{1}}=\frac{1}{m_{2}}+\frac{1}{m_{3}}
\end{aligned}
$$

$\therefore$ (B)
9. (C)
10. (C)
$m g-B=m f$
$B-\left(m-m^{\prime}\right) g=\left(m-m^{\prime}\right) f$
$\Rightarrow m^{\prime} g=\left(2 m-m^{\prime}\right) f \Rightarrow m^{\prime}=\frac{2 m f}{g+f}$
$\Rightarrow w^{\prime}=\frac{2 w f}{g+f}$
11. $2 \mathrm{~T}-\mathrm{Mg}=\mathrm{Ma}$
$\mathrm{T}=\frac{\mathrm{M}(\mathrm{g}+\mathrm{a})}{2}=522.5 \mathrm{~N}$
$\therefore$ (A)
12. $\mathrm{F}-\mathrm{F} \cos \theta=\mathrm{MA}$
$A=\frac{F-F \cos \phi}{M}$
$\therefore$ (B)
13. From the law of refection

$\tan 30^{\circ}=\frac{B C}{A B}=\frac{B C}{0.2} ; B C=0.2 \times \frac{1}{\sqrt{3}}=0.115$
Total no. of reflection $=30$
$\therefore$ (B)
14. $\sin \theta>\sin \theta_{C}=\frac{1}{\mu}$

$$
\sin \theta>\frac{1}{\frac{3 / 2}{4 / 3}}, \quad \sin \theta>\frac{8}{9}
$$

$\therefore$ (A)

15. (B)


Total angle of deviation $=2(\alpha-\beta)$
16. For refraction at spherical surface $\frac{\mu}{v}-\frac{1}{\infty}=\frac{\mu-1}{R} \Rightarrow v=\frac{\mu}{\mu-1} R=3 R$
$\therefore$ (B)
17. Applying Snell's law $\mu_{1} \sin i=\mu_{2} \sin r$

$$
\left(\frac{3}{2}\right)\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)=2\left(\frac{c}{\sqrt{c^{2}+d^{2}}}\right)
$$

Here $\sqrt{a^{2}+b^{2}}=\sqrt{c^{2}+d^{2}}=1$
$\therefore \frac{a}{c}=\frac{4}{3}$
$\therefore$ (A)

18. (D)

For refraction
$\frac{1.5}{\mathrm{v}_{1}}-\frac{1}{-2 \mathrm{R}}=\frac{1.5-1}{\mathrm{R}}$
$\Rightarrow \mathrm{v}_{1}=\infty \quad$ i.e. parallel beam
For Reflection
$\frac{1}{v_{2}}+\frac{1}{-\infty}=\frac{1}{-R / 2}$
$\Rightarrow \mathrm{v}_{2}=-\mathrm{R} / 2$
For Final Refraction
$\frac{1}{v_{3}}-\frac{1.5}{-3 R / 2}=\frac{1-1.5}{-R}$
$\Rightarrow v_{3}=-2 R \quad$ i.e. at pole of silvered part
19. (D)
$d^{\prime}=\frac{d}{n_{\text {ref }}}$
$\mathrm{d}^{\prime}=\frac{4}{1.6}=2.5 \mathrm{~cm}$

$\frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{1}}{\mathrm{u}}=\frac{\left(\mu_{2}-\mu_{1}\right)}{\mathrm{R}}$
$\frac{1}{\mathrm{v}}-\frac{1.6}{-4}=\frac{1-1.6}{-8}$
$v=\frac{-40}{13}=-3 \mathrm{~cm}$ (Approx)
hence distance between images $=8-(3+2.5)=2.5 \mathrm{~cm}$
20. (A)

$\mathrm{r}+\mathrm{i}=90$
For $\theta$ max. $\Rightarrow r$ should be max.
$i$ will be minimum for TIR minimum value of $i$
$\mathrm{i}=\mathrm{c}$
$r=90-c$
$\sin r=\sin (90-c)=\cos c=\sqrt{1-\sin ^{2} c}=\sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}$
$\sin \mathrm{c}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$
$\sin \mathrm{r}=\frac{\sqrt{\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}}}{\mathrm{n}_{1}}$
by snell's law
$1 \times \sin \theta=n_{1} \sin r=\sqrt{n_{1}^{2}-n_{2}^{2}}$
$\theta=\sin ^{-1} \sqrt{\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}}$
Option (A) is correct.
21. [B]
$\theta_{2}+\theta_{3}+135^{\circ}=180^{\circ}$
$\theta_{3}=45^{\circ}-\theta_{2}$
$\theta_{3}+\theta_{4}=90^{\circ}$
$45^{\circ}-\theta_{2}+\theta_{4}=90^{\circ}$
$\theta_{4}=45^{\circ}+\theta_{2}$
$90^{\circ}-\theta_{4}+\theta_{5}+135^{\circ}=180^{\circ}$
$45^{\circ}-\theta_{2}+\theta_{5}+135^{\circ}=180^{\circ}$
$\theta_{5}=\theta_{2}$
$\therefore \theta_{6}=\theta_{1}$ (By Snell law)
$\therefore \delta=180^{\circ}$
22. (B)
23. (A)

Consider the representative rays shown in Fig. A ray entering the glass through surface $A$ and passing along the inner side of the rod will be reflected by the outer side with the smallest angle $\alpha$, at which the reflected ray is tangent to the inner side. We have to consider the conditions under which the ray will undergo total internal reflection before reaching $B$.


If $\alpha>\theta_{\mathrm{c}}$, the critical angle, at which total internal reflection occurs, all the incident beam will emerge through the surface $B$. Hence we require $\sin \alpha>\frac{1}{n}$.

The geometry gives $\sin \alpha=\frac{\mathrm{R}}{(\mathrm{R}+\mathrm{d})}$.
Therefore $\quad \frac{\mathrm{R}}{\mathrm{R}+\mathrm{d}} \geq \frac{1}{\mathrm{n}}$,
or $\quad\left(\frac{R}{d}\right)_{\min }=\frac{1}{n-1}=\frac{1}{1.5-1}=2$.
24. [C]

$$
\sin e=(1+0.4 t) \times \sin 45^{\circ}
$$

$\cos \mathrm{e} \times \frac{\mathrm{de}}{\mathrm{dt}}=\frac{1}{\sqrt{2}} \times 0.4$

$$
\text { at } \mathrm{t}=1 \sec \mu=1.4 \therefore \sin \mathrm{e}=\frac{1.4}{\sqrt{2}}
$$



$$
\cos \mathrm{e}=0.141 \therefore \frac{\mathrm{de}}{\mathrm{dt}}=\frac{0.4}{0.141} \times \frac{1}{\sqrt{2}}=2 \mathrm{rad} / \mathrm{sec} .
$$

25. Ray inside medium $A B$ is parallel to ray inside medium $C D$

$$
\therefore \quad \text { (D) }
$$

26. $\mu \sin \theta=\sin 45^{\circ}$

$$
\begin{aligned}
& \frac{\mu h}{h \sqrt{5}}=\frac{1}{\sqrt{2}} \\
& \mu=\sqrt{\frac{5}{2}}
\end{aligned}
$$


27. (A)

Let $\vec{A}$ at any instant of time t change to $\vec{A}+d \vec{A}$ at instant $t+d t$ as shown in diagram.

$\because$ magnitude of vector does not change

$$
|\vec{A}|=|\vec{A}+d \vec{A}|
$$

Hence $\phi_{1}=\phi_{2}=\pi / 2 \quad$ [as $\mathrm{d} \theta \rightarrow 0$ ]
or $d \vec{A} \perp \vec{A} \quad$ or $\quad \frac{d \vec{A}}{d t} \perp \vec{A}$
Alternate solution :
Let $\vec{A}=r \hat{e}_{r}$
$\therefore \quad \frac{d \vec{A}}{d t}=r \omega \hat{e}_{t} \quad$ if magnitude of $\vec{A}$ does not change.
Where $\hat{e}_{r}$ and $\hat{e}_{t}$ vectors in radial and normal directions.
$\therefore \frac{\mathrm{d} \overrightarrow{\mathrm{A}}}{\mathrm{dt}} \perp \overrightarrow{\mathrm{A}}$
28. (D)


The particle is at rest under action of forces $P, Q$ and $R$.
$\therefore Q \sin 60^{\circ}=P$ and $Q \cos 60^{\circ} R$
$\Rightarrow \frac{2}{\sqrt{3}} P=Q \quad$ and $\quad 2 R=Q$
$\Rightarrow P: Q: R=\sqrt{3}: 2: 1$
29. (C)
30. (A)

Let be the angle of emergence from the first prism be ' $e$ '
calculating step by step we get $\mathrm{e}=\sin ^{-1} \frac{2}{3}$
Then for net deviation to be double, the incident ray on side $A^{\prime} B^{\prime}$ of second prism should make angles i or e with normal.


Hence the angle between the given then will be 2 e or $\mathrm{i}+\mathrm{e}$.

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

## CHEMISTRY

31. (D)
$\mathrm{Na}_{2} \stackrel{+2}{\mathrm{~S}}_{2} \mathrm{O}_{3}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \stackrel{+6}{\mathrm{~S}_{\mathrm{O}}} \mathrm{O}_{4}+\mathrm{H}_{2} \stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}+\mathrm{HCl}$
$\therefore \mathrm{x}$ factor for $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=2|(2-6)|=8$
$\therefore$ equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\frac{\text { Mol.wt }}{8}$
32. (B)

The equiv. wt. of $\mathrm{P}_{4}=\frac{31 \times 4}{5 \times 4}=\frac{31}{5}$
$\therefore 62 \mathrm{gm} \mathrm{P}_{4}=\frac{62 \times 5}{31}$ equiv. of $\mathrm{P}_{4}=10$ equiv. of $\mathrm{P}_{4}$
The equiv. wt. of $\mathrm{HNO}_{3}=\frac{\text { Mol.wt }}{1}=\frac{63}{1}$
$\therefore$ the wt. of $\mathrm{HNO}_{3}$ required
$=10 \times 63=630 \mathrm{gm}$
33. (B)

The reaction are
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{A}^{+\mathrm{n}}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{AO}_{3}^{-}+6 \mathrm{H}^{+}+(5-\mathrm{n}) \mathrm{e}^{-}$
Amount of electrons involved in the given amount of $\mathrm{MnO}_{4}^{-}=5 \times 1.6 \times 10^{-3} \mathrm{~mol}$.
Equating these two we get $5 \times 1.6 \times 10^{-3}=(5-n) 2.7 \times 10^{-3}$
$\therefore \mathrm{n}=2$ (approx.)
34. (A)

|  | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |
| :--- | :--- |
| Let | $\mathrm{NaHCO}_{3}$ |
| a meq. | b meq. |

when HPh is used as indicator
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NaHSO}_{4}$
then $\frac{1}{2}$ meq. of $\mathrm{Na}_{2} \mathrm{Cl}_{3}=$ meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{a}{2}=2.5 \times 0.1 \times 2 \Rightarrow a=1$
MeOH is added after the first end point the solution
Contains $\mathrm{NaHCO}_{3}$ original \& $\mathrm{NaHCO}_{3}$ produced.
$\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaHSO}_{4}$
meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ meq. of $\mathrm{NaHCO}_{3}$ original + meq. of $\mathrm{NaHCO}_{3}$ produced
$2.5 \times 0.2 \times 2=b+1 / 2$ meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=b+a / 2$
$b+a / 2=1$
b $=1-0.5=0.5$
wt of $\mathrm{Na}_{2} \mathrm{CO}_{3} /$ lit $=\mathrm{a} \times 10^{-3} \times \frac{106}{2} \times \frac{1}{10} \times 1000$
$=1 \times \frac{53}{10}=5.3 \mathrm{gm}$
wt of $\mathrm{NaHCO}_{3} /$ lit $=\mathrm{b} \times 10^{-3} \times 84 \times \frac{1}{10} \times 1000=4.2 \mathrm{gm}$
35. (B)

Mass of $\mathrm{HCO}_{3}{ }^{-}$in 1 kg or $10^{6} \mathrm{mg}$ water $=244 \mathrm{mg}$
Millimoles of $\mathrm{HCO}_{3}^{-}=\frac{244}{61}=4$
$2 \mathrm{HCO}_{3}^{-}+\mathrm{CaO} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+2 \mathrm{e}^{-}$
millimoles of $\mathrm{CaO}=2$
mass of $\mathrm{CaO}=56 \times 2=112 \mathrm{mg}$
36. (A)

Molecular mass of chloride of metal $=$ weight of $22,400 \mathrm{ml}$ vapour of metal at STP
$=\frac{0.72 \times 22,400}{100}=161.28 \mathrm{~g}$
100 g of metal chloride contains $=65.5 \mathrm{~g}$ chloride
$\therefore 161.28 \mathrm{~g}$ metal chloride contains $=\frac{65.5 \times 161.28}{100}=105.6 \mathrm{~g}$
Therefore, the number of mole of chlorine atoms per mole of metal chloride
= 105.6/35.5 = 3
Hence the molecular formula of metal chloride is $\mathrm{MCl}_{3}$
37. (B)

Milli eq. of HCl initially $=10 \times 0.5=5$
Milli eq. of NaOH consumed $=$ Milli eq. of HCl in excess

$$
=10 \times 0.2=2
$$

$\therefore$ Milli eq. of HCl consumed $=$ Milli eq. of $\mathrm{Ba}(\mathrm{OH})_{2}=5-2=3$
$\therefore$ eq. of $\mathrm{Ba}(\mathrm{OH})_{2}=3 / 1000=3 \times 10^{-3}$
Mass of $\mathrm{Ba}(\mathrm{OH})_{2}=3 \times 10^{-3} \times(171 / 2)=0.2565 \mathrm{~g}$.
$\% \mathrm{Ba}(\mathrm{OH})_{2} \quad=\quad(0.2565 / 2) \times 100=12.8 \%$
38. (C)

Milli equivalents of $\mathrm{HCl}=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=\frac{1 \times 40}{10}=4$
Milli equivalents of $\mathrm{KOH}=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=\frac{1 \times 60}{20}=3$
One milli equivalent of an acid neutralizes one milli equivalent of a base
Milli equivalent of HCl left $=4-3=1$
Total volume of the solution $=40+60=100 \mathrm{ml}$
Milli equivalents of $\mathrm{HCl} \quad=\mathrm{N} \times \mathrm{V}(\mathrm{ml})$

$$
1=N \times 100
$$

Normality ( N ) of HCl left in solution $=0.01$
Salt formed $=$ Milli equivalent of acid or base neutralized
Milli equivalents of the salt formed $=\mathrm{N} \times \mathrm{V}(\mathrm{ml})$

$$
3=N \times 100
$$

Normality (N) of salt formed $\quad=0.03$
39. (A)

Meq equlivalent for KMnO 4 is $300 \times(1 / 12)=25$
Meq for $\mathrm{H}_{2} \mathrm{O}_{2}$ is 25 Normality $=25 / 20=1.25 \mathrm{~N}$
volume stenght $=5.6 \times 1.25=7$
40. (A)
41. (C)

42. (B)

43. (C)

44. (C)

45. (C)


3-Methylbutan-2-ol
46. (A)
47. (C)

More stable resonating structure contributed higher in R.S.
48. (B)

Lone pair of electrons of $\mathrm{H}_{2} \mathrm{C}=\stackrel{\mathrm{N}}{ }-\mathrm{CH}_{3}$ is in $\mathrm{sp}^{2}$ hybrid orbital.
49. (A)

Due to delocalization of $\pi$ electron in benzene.
50. (A)

In resonance position of atoms does not change.
51. (A)
52. (B)
53. (A)
54. (D)
55. (D)
56. (A)
57. (D)

Oxide and hydroxide of $\mathrm{Zn}, \mathrm{Al}, \mathrm{Be}, \mathrm{Pb}$ are amphoteric.
58. (D)
59. (A)
60. (B)

Option (B). is not correct due to same reason as in above question

## MATHEMATICS

61. (D)

$$
\begin{aligned}
& f(x)+f(1-x)=\frac{1}{27} \\
& =\frac{1}{27} \times 54=2
\end{aligned}
$$

62. (B)

Odd Extension from [0, 1] to [-1, 1] means the function which satisfies the condition $f(-x)=-f(x)$. Now $|-x|=|x|$
$f(-x)=x^{2}-x-\sin x+\log (1+|x|)$
$=-\left(-x^{2}+x+\sin x-\log (1+|x|)\right)$
$\therefore$ (b) is correct.
63. (B)
$f(x)=\alpha+5 x-x^{2}=\alpha+\frac{25}{4}-\left(x-\frac{5}{2}\right)^{2} \Rightarrow \alpha+\frac{25}{4}=5$
64. (C)

$$
\begin{aligned}
& {\left[\sqrt{p^{2}+1}\right]=p \Rightarrow p+r \leq \sqrt{p^{2}+q}<p+r+1 \Rightarrow p^{2}+r^{2}+2 p r \leq p^{2}+q<p^{2}+2 p r+2 p+r^{2}+2 r+1} \\
& \Rightarrow r^{2}+2 p r \leq q<\left(r^{2}+2 p r\right)+(2 p+2 r+1)
\end{aligned}
$$

Hence $q$ can take ' $2 p+2 r+1$ ' different values.
65. (D)

Let equation of $A B$ be $y=x+a$
$\therefore \mathrm{A}(1-\mathrm{a}, 1)$ and $\mathrm{B}(2,2+\mathrm{a})$
$\therefore$ equation of $A D$ is

$$
y-1=-1(x-1+a)
$$

$\therefore \mathrm{D}(-2,4-\mathrm{a})$
Let C(h,k)
$\Rightarrow \mathrm{h}+1-\mathrm{a}=2-2 \Rightarrow \mathrm{~h}=\mathrm{a}-1$
and $k+1=2+a+4-a$
$\Rightarrow$ k $=5$
$\therefore$ Locus of $\mathrm{C}(\mathrm{h}, \mathrm{k})$ is $\mathrm{y}=5$
66. (D)
$\tan \left(180^{\circ}-\theta\right)=$ slope of $A B=-3$
$\therefore \quad \tan \theta=3$
$\therefore \frac{\mathrm{OC}}{\mathrm{AC}}=\tan \theta, \frac{\mathrm{OC}}{\mathrm{BC}}=\cot \theta$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\tan \theta}{\cot \theta}=\tan ^{2} \theta=9$
67. (C)

Let $A(a, 0), B(0, b)$ and $O(0,0)$ are vertices of a right angled triangle, then vertices of the triangle made by reflection of $A, B, O$ into opposite sides will be $A^{\prime}(-a, 0), B^{\prime}(0,-b)$ and $O^{\prime}\left(\frac{2 a b^{2}}{a^{2}+b^{2}}, \frac{2 a^{2} b}{a^{2}+b^{2}}\right)$. Then the value $k$ is 3 .
68. (A)

Graph of $f(x)$ is given by


Therefore period of $\mathrm{f}(\mathrm{x})$ is 6 and $|\mathrm{f}(\mathrm{x})|$ is 1

$$
\Rightarrow \quad \mathrm{T}_{1}^{2}+\mathrm{T}_{2}^{2}=37
$$

69. (B)

When
(i) $\mathrm{P}=0$ then it has infinte solution
(ii) if $-4<\mathrm{P}<0$ or $0<\mathrm{P}<4$ then it intersect at 2 points

(iii) $\mathrm{P} \geq 4$ or $\mathrm{P} \leq-4$ then it has only one solution
70. (D)
$(1997,0)$ lies on $y=m x+c$
$\Rightarrow 0=1997 \mathrm{~m}+\mathrm{c} \Rightarrow \mathrm{c}=-1997 \mathrm{~m}$
$\Rightarrow \mathrm{mc}=-1997 \mathrm{~m}^{2} \leq 0$
which is not possible.
71. (C)

$$
\begin{aligned}
& f(x-c)=g(x)=-g(-x) \\
& =-f(-x-c)=-f(x+c)
\end{aligned}
$$

$$
(\because g(x) \text { is odd })
$$

( $\because \mathrm{f}$ is even)
$\therefore f(x+c)=-f(x-c)$
$\Rightarrow f(x+2 c)=-f(x+c-c)=-f(x)$
$\Rightarrow f(x+4 \mathrm{c})=-\mathrm{f}(\mathrm{x}+2 \mathrm{c})=-(-\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{x})$
$\Rightarrow f$ is periodic with period 4 c .
72. (C)
$f(x)=\left|4 \frac{(\sqrt{\cos } x-\sqrt{\sin } x)(\sqrt{\cos } x+\sqrt{\sin x})}{(\cos x+\sin x)}\right|$ is defined only if $\cos x \geq 0, \sin x \geq 0$
Therefore, $x$ lies in first quadrant only.
$f(x)=\left|4 \frac{(\cos x-\sin x)}{(\cos x+\sin x)}\right|=\left|4 \tan \left(\frac{\pi}{4}-x\right)\right|=\left|4 \tan \left(x-\frac{\pi}{4}\right)\right|$
Now, $0 \leq x \leq \frac{\pi}{2}$
or $-\frac{\pi}{4} \leq x-\frac{\pi}{4} \leq \frac{\pi}{4}$
or $-1 \leq \tan \left(x-\frac{\pi}{4}\right) \leq 1$
or $-4 \leq 4 \tan \left(x-\frac{\pi}{4}\right) \leq 4$
$0 \leq\left|4 \tan \left(x-\frac{\pi}{4}\right)\right| \leq 4$
73. (C)
74. (A)
$f(x)$ is defined if $\log _{|\operatorname{sinx|}|}\left(x^{2}-8 x+23\right)-\frac{3}{\log _{2}|\sin x|}>0$
$\Rightarrow \log _{|\sin x|}\left(\frac{x^{2}-8 x+23}{8}\right)>0\left\{\right.$ as $\left.\frac{3}{\log _{2}|\sin x|}=\frac{\log _{2} 8}{\log _{2}|\sin x|}=\log _{|\sin x|} 8\right\}$
$\therefore|\sin x| \neq 0,1$ and $\frac{x^{2}-8 x+23}{8}<1$

$$
\begin{aligned}
& \quad\left\{\text { as }|\sin x|<1 \Rightarrow \log _{|\sin x|} a>0 \Rightarrow a<1\right\} \\
& \text { Now, } \frac{x^{2}-8 x+23}{8}<1 \Rightarrow x^{2}-8 x+15<0 \\
& \therefore \quad x \in(3,5)-\left\{\pi, \frac{3 \pi}{2}\right\}
\end{aligned}
$$

Hence domain of a function

$$
=(3, \pi) \cup\left(\pi, \frac{3 \pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 5\right) .
$$

75. (D)

Minimum value of $|P A-P B|$ is zero. It can be attained, if $P A=P B$. that means ' $P$ ' must lie on the right bisector of $A B$.

Equation of right bisector of $A B$ is $y-\frac{1}{2}=2(x-1)$ i.e., $y=2 x-\frac{3}{2}$
Solving with given line, we get $P \equiv\left(-\frac{9}{20},-\frac{12}{5}\right)$
76. (A)

Extremities of the given diagonal are $(4,0)$ and $(0,6)$
$\Rightarrow$ slope of this diagonal $=-\frac{3}{2}$
$\Rightarrow$ slope of other diagonal $=\frac{2}{3}$
$\Rightarrow$ equation of the other diagonal is $\frac{x-2}{\frac{3}{\sqrt{13}}}=\frac{y-3}{\frac{2}{\sqrt{13}}}=r$
for the extermities of the diagonal $r= \pm \sqrt{13}$
$\Rightarrow x-2= \pm 3, y-3= \pm 2 \Rightarrow x=5,-1$ and $y=5,1$
$\Rightarrow$ the extremities of the diagonal are $(5,5),(-1,1)$.
77. (D)
$\because \mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ are 3 non-concurrent lines
$\therefore$ A triangle will be formed by the lines
$\therefore$ Incentre and 3-ex-centres are the points which are equidistant from $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and $\mathrm{L}_{3}$ Hence (D) is the correct answer.
78. (A)
$3 x+4 y=9, y=m x+1$
$3 x+4(m x+1)=9 \Rightarrow x=\frac{5}{(3+4 m)}$
Since $x \in I \Rightarrow 3+4 m=-1,1,5,-5 \Rightarrow m=-1,-2$
79. (D)
' $m$ ' of $P S=\frac{1-2}{\frac{13}{2}-2}=-\frac{2}{9}$
Equation to parallel line through $(1,-1)$ is $y+1=-\frac{2}{9}(x-1)$
$2 x+9 y+7=0$.
80. (B)
$y=\frac{x-1}{x^{2}-3 x+3}$
$\Rightarrow x^{2} y-3 x y+3 y=x-1$
$\Rightarrow x^{2} y-x(3 y+1)+3 y+1=0$
$\therefore \quad D \geq 0$
$\Rightarrow(3 y+1)^{2}-4 y(3 y+1) \geq 0 \Rightarrow-3 y^{2}+2 y+1 \geq 0$
$\Rightarrow 3 \mathrm{y}^{2}-2 \mathrm{y}-1 \leq 0 \Rightarrow \mathrm{y}^{2}-\frac{2 \mathrm{y}}{3}-\frac{1}{3} \leq 0$
$\Rightarrow\left(y-\frac{1}{3}\right)^{2}-\frac{1}{9}-\frac{1}{3} \leq 0 \Rightarrow\left(y-\frac{1}{3}\right)^{2} \leq \frac{4}{9} \Rightarrow-\frac{2}{3} \leq y-\frac{1}{3} \leq \frac{2}{3}$
$\therefore \quad-\frac{1}{3} \leq \mathrm{y} \leq 1$
$\therefore \quad y \in\left[-\frac{1}{3}, 1\right]$
81. (B)

Here $A \equiv(2,0), B \equiv(\sqrt{5}, 0)$

$$
\begin{aligned}
& C \equiv(0, \sqrt{5}), D \equiv(0,1) \\
& E \equiv\left(\frac{2}{1+2 m}, \frac{2 m}{1+2 m}\right) \text { and } F \equiv\left(\frac{\sqrt{5}}{1+m}, \frac{\sqrt{5} m}{1+m}\right) .
\end{aligned}
$$

Now, $2 \times \operatorname{ar}(\square A B F E)=\operatorname{ar}(\square A B C D)$

$$
\begin{aligned}
& \Rightarrow \quad 2\{\operatorname{ar}(\triangle \mathrm{OBF})-\operatorname{ar}(\triangle \mathrm{OAE})\}=\operatorname{ar}(\triangle \mathrm{OBC})-\operatorname{ar}(\triangle \mathrm{OAD}) \\
& \Rightarrow \quad 2\left\{\frac{1}{2} \times \sqrt{5} \times \frac{\sqrt{5} \mathrm{~m}}{1+\mathrm{m}}-\frac{1}{2} \times 2 \times \frac{2 \mathrm{~m}}{1+2 \mathrm{~m}}\right\}=\frac{1}{2} \times \sqrt{5} \times \sqrt{5}-\frac{1}{2} \times 2 \times 1 \\
& \Rightarrow \quad \mathrm{~m}=\frac{3}{2} \quad(\because \mathrm{~m}>0)
\end{aligned}
$$

82. (A)

In an equilateral triangle the orthocentre and the centroid are the same. OPQ is the equilateral triangle in which $\mathrm{OC} \perp \mathrm{PQ}$.
Clearly, the point H which divides OC internally in the ratio $2: 1$ is the orthocentre.

Clearly, $\mathrm{OC}=\frac{1}{\sqrt{2}}$. So, $\mathrm{OH}=\frac{2}{3} \times \frac{1}{\sqrt{2}}$

$\therefore \quad H=\left(\frac{2}{3 \sqrt{2}} \cos 45^{\circ}, \frac{2}{3 \sqrt{2}} \sin 45^{\circ}\right)$
83. (D)

Orthocentre of triangle BCH is the vertex $\mathrm{A}(-1,0)$.
84. (C)

It is obvious that $a, b$ and $c$ are the roots of the equation $m t^{3}+(I-p) t-k q=0$, where $(p, q)$ is the point of concurrency.
Obviously sum of roots $=a+b+c=0$
$\Rightarrow \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$
85. (B)
$f(f(x))=x$
$\frac{a\left(\frac{a x+b}{c x+d}\right)+b}{c\left(\frac{a x+b}{c x+d}\right)+d}=x$
$c(a+d) x^{2}+\left(d^{2}-a^{2}\right) x-b(a+d)=0$
$\Rightarrow a+d=0 \Rightarrow a=-d$
Now, $f(1)=1 \Rightarrow c=2 a+b$.
$\& f(5)=5 \Rightarrow 25 c=10 a+b$
\& hence $a=3 c \Rightarrow b=-5 c$
$\therefore f(x)=\frac{3 x-5}{x-3}$
86. (A)
$x y>0 \Rightarrow P$ either lies in first quadrant or in third quadrant.
$x+y<1 \Rightarrow P$ lies below line $x+y=1$
87. (C)

Let $A_{1}$ be the reflection of $A$ in $y=x$

$$
\mathrm{A}_{1}(4,3)
$$

Now $P A+P B=A_{1} P+P B$
which is minimum if $A_{1}, P, B$ are collinear.
Equation of $A_{1} B$ is $3 y=10 x-31$
Solving it with $\mathrm{y}=\mathrm{x}$, we get $\mathrm{P}\left(\frac{31}{7}, \frac{31}{7}\right)$

88. (C)
$f(x)+f(x+1)+f(x+2)+\ldots+f(x+2015)=0$
$\mathrm{f}(\mathrm{x}+1)+\mathrm{f}(\mathrm{x}+2)+\ldots+\mathrm{f}(\mathrm{x}+2015)+\mathrm{f}(\mathrm{x}+2016)=0$
substracting we get
$\Rightarrow \mathrm{f}(\mathrm{x}+2016)=\mathrm{f}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{R}$
Period of $f(x)$ is 2016
89. (D)

Use $\frac{x^{2}-5 x+6}{x^{2}+x+1}>0 \Rightarrow x \in(-\infty, 2) \cup(3, \infty)$
and $\left[x^{2}-1\right]>0 \Rightarrow x \in(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty)$
90. (A)
$f(7)+f(-7)=-10$
or, $f(7)=-17$
or, $f(7)+17 \cos x=-17+17 \cos x$
which has the range $[-34,0]$

