SOLUTIONS

WEEKLY TEST-8

RBA

(JEE MAIN PATTERN)
 Test Date: 23-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (B)

$$
F \sin 53^{\circ}=20
$$

$\Rightarrow 5 \mathrm{t} \times \frac{4}{5}=20$
$\Rightarrow t=5 s$
$a=\frac{\mathrm{F} \cos 53^{\circ}}{6}=\frac{5 \times 5 \times \frac{3}{5}}{6}$
$=\frac{5}{2} \mathrm{~m} / \mathrm{s}^{2}$

$$
F^{\prime}=4 \times \frac{5}{2}=10 \mathrm{~N}
$$

2. (C)

$N=F \cdot \frac{3}{5}+40$
$\Rightarrow 160=F \cdot \frac{3}{5}+40 \Rightarrow F=200 N$
$\therefore \mathrm{a}_{\max }=\frac{200 \times \frac{4}{5}-30}{5}=26 \mathrm{~m} / \mathrm{s}^{2}$
3. (A)
for $T=T_{\max }=300 \mathrm{~N}$ in the upper string, tension in the string connected to the block $=150 \mathrm{~N}$
$\therefore \mathrm{a}_{\text {max }}=\frac{150-100}{10}$
$=5 \mathrm{~m} / \mathrm{s}^{2}$

4. (A)

$\frac{2 \mathrm{~kg}}{\mathrm{a}}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$

$\mathrm{F}_{2}+7+3=(3+1) \times 5$
$\mathrm{F}_{2}=20-10=10 \mathrm{~N}$
$F_{2}, \max =10 \mathrm{~N}$
5. (A)
$\mathrm{T} \cos 53^{\circ}=2 \times 1$
$\Rightarrow \mathrm{T} \times \frac{3}{5}=2 \Rightarrow \mathrm{~T}=\frac{10}{3}$
$\mathrm{T} \cos 37^{\circ}=3 \times \mathrm{a}$
$\Rightarrow \frac{10}{3} \times \frac{4}{5}=3 a$
$=\mathrm{a}=\frac{8}{9} \mathrm{~m} / \mathrm{s}^{2}$
6. (B)
$\mathrm{f}_{1}=0.5 \times 20=10 \mathrm{~N}$
$\mathrm{f}_{2}=0.3 \times 20=6 \mathrm{~N}$
$\mathrm{f}_{\text {net }}=16 \mathrm{~N}$
$\mathrm{F}=4 \mathrm{t}=20+16$
$\Rightarrow \mathrm{t}=9 \mathrm{~s}$
at $t=9 \mathrm{~s}$, block will start accelerating
7. (C)
8. (C)

From constraint relation $v_{B}=\frac{v}{3}$
9. (A)

Applying Snell's law between the points O and P, we have

$$
\begin{aligned}
& 2 \times \sin 60^{\circ}=\left(\sin 90^{\circ}\right) \times \frac{2}{\left(1+H^{2}\right)}, \\
& \left(1+H^{2}\right)=\frac{2}{\sqrt{3}}, \quad H=\sqrt{\left(\frac{2}{\sqrt{3}}-1\right)}
\end{aligned}
$$

$$
2 \times \frac{\sqrt{3}}{2}=1 \times \frac{2}{\left(1+H^{2}\right)}
$$

10. (D)

Initial distance between trains is 300 m . Displacement of 1 st train is calculated by area under
V-t. curve of train $1=\frac{1}{2} \times 10 \times 40=200 \mathrm{~m}$

Displacement of train $2=\frac{1}{2} \times 8 \times(-20)=-80 \mathrm{~m}$.
Which means it moves towards left.
\therefore Distance between the two is 20 m .
11. (C)

The retardation is given by $\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{av}^{2}$
integrating between proper limits $\Rightarrow-\int_{u}^{v} \frac{d v}{v^{2}}=\int_{0}^{t} a d t \quad$ or $\frac{1}{v}=a t+\frac{1}{u}$
$\Rightarrow \quad \frac{\mathrm{dt}}{\mathrm{dx}}=\mathrm{at}+\frac{1}{\mathrm{u}} \quad \Rightarrow \quad \mathrm{dx}=\frac{\mathrm{udt}}{1+\mathrm{aut}}$
integrating between proper limits $\int_{0}^{\mathrm{s}} \mathrm{dx}=\int_{0}^{\mathrm{t}} \frac{\mathrm{udt}}{1+\mathrm{aut}} \Rightarrow \mathrm{S}=\frac{1}{\mathrm{a}} \ln (1+\mathrm{aut})$
12. (C)

Fringe width $(\mathrm{B})=\frac{\lambda D}{d}$

$$
\Rightarrow \beta \propto \frac{1}{d}
$$

13. (A)

$10 \mathrm{~kg} \longrightarrow \mathrm{f}=0.5 \times \mathrm{N}$
$a=\frac{f}{10}=\frac{0.5 \times\left(20-f \times \frac{3}{5}\right)}{10}$
$\mathrm{F}+\mathrm{F} \cos 37^{\circ}=(2+10) \times \mathrm{a}$
from (1) \& (2) $F=\frac{50}{9} N$
14. (A)

As the value of F is increased from zero, the frictional force between right upper and lower block is more in comparision to that between left upper and lower block. Hence friction will reach its maximum value between the right two blocks first. Based on the maximum value of friction $f_{\max }$ and the mass that needs to be accelerated by this force (see figure), the maximum acceleration of these blocks is

$$
a_{\max }=\frac{f_{\max }}{(m+m+M)}=\frac{\mu m g}{2 m+M}
$$

Now, looking at the entire system as whole

$$
F=(2 m+2 M) a_{\max }=\frac{2 \mu m g(m+M)}{2 m+M}
$$

15. (D)
$\mathrm{A}_{1}=\mathrm{A}_{3}=8$ (area)
$A_{2}=A_{4}=9$
Position of the particle at any time t is given by
$X=X_{0}+\int_{0}^{t} V d t \quad X_{0}=$ Initial position
$\int_{0}^{t} V d t=$ Area under the curve
Now at

$$
t=0 X=X_{0}=-1
$$

$$
\begin{aligned}
& \text { at } \\
& \text { at } \\
& t=7 \\
& t=10
\end{aligned}
$$

$$
t=2 X=X_{0}+A_{1}=-1+8=7
$$

$$
\text { at } \quad t=5 \mathrm{X}=\mathrm{X}_{0}+\mathrm{A}_{1}-\mathrm{A}_{2}=-1+8-9=-2
$$

$$
\mathrm{t}=7 \quad \mathrm{X}=\mathrm{X}_{0}+\mathrm{A}_{1}-\mathrm{A}_{2}+\mathrm{A}_{3}=-1+8-9+8=6
$$

$$
\mathrm{X}=\mathrm{X}_{0}+\mathrm{A}_{1}-\mathrm{A}_{2}+\mathrm{A}_{3}-\mathrm{A}_{4}=-1+8-9+8-7=3
$$

As during 10 seconds four times the position of the particle changed in sign. Particles passes 4 times the origin.
16. (C)

$$
\begin{aligned}
& v=\cos \left(\frac{\pi}{3} t\right) \Rightarrow \frac{d x}{d t}=\cos \left(\frac{\pi}{3} t\right) \\
& \Rightarrow x=\int_{0}^{2} \cos \left(\frac{\pi}{3} t\right) d t=\int_{0}^{\frac{3}{2}} \cos \left(\frac{\pi}{3} t\right) d t+\left|\int_{\frac{3}{2}}^{2} \cos \left(\frac{\pi}{3} t\right) d t\right| \Rightarrow x=\frac{3}{\pi}\left[2-\frac{\sqrt{3}}{2}\right]
\end{aligned}
$$

17. (A)
$4 \mathrm{I}=\mathrm{I}_{0} \Rightarrow \mathrm{I}=\frac{\mathrm{I}_{0}}{4}=$ intarsity of one slit.

$$
\begin{aligned}
& 8 x=\sqrt{D^{2}+d^{2}}-D \simeq \frac{1}{2} \times \frac{d^{2}}{D}=\frac{1}{2} \times \frac{25 \lambda^{2}}{50 \lambda}=\frac{\lambda}{4} \\
& \therefore \quad \phi=\frac{2 \pi}{\lambda} \times \Delta x \phi=\frac{2 \pi}{\lambda} \times \Delta x=\frac{\pi}{2} \\
& \therefore \quad I_{\text {net }}=I+I+2 \sqrt{I I} \cos \frac{\pi}{2} \\
& =2 I=\frac{I_{0}}{2}
\end{aligned}
$$

18. (D)
$\frac{f_{0}}{f e}=10 \Rightarrow f_{0}=200$
\therefore (D)
19. (A)
$V_{I}=-m^{2} v_{0}$
$m=\frac{f}{u-f}$
$V_{I}=\left[\frac{-f}{-\left(\frac{f}{2}-x\right)+f}\right]^{2} \sqrt{2 g x}$

For V_{I} to be $\max \frac{d v_{I}}{d x}=0$
We get $x=\frac{f}{6}$
$V_{I}=\frac{3}{4} \sqrt{3 g f}$
But, $\quad f=\frac{3}{40} \mathrm{~m}$;
$\therefore \quad V_{I}=\frac{9}{8} \mathrm{~m} / \mathrm{s}$.
20. (C)

Torque of electrostatic force is zero.
21. (C)

For F to be along negative x -axis, q_{1} has to be negative while q_{2} has to be positive.
also $F_{1} \cos 53=F_{2} \cos 37^{\circ}$
where $F_{1}=\frac{K \cdot q_{1} q_{3}}{(4 c m)^{2}}$ and $F_{2}=\frac{K \cdot q_{2} q_{3}}{(3 c m)^{2}}$
on putting values $\mathrm{q}_{2}=\frac{27}{32} \mu \mathrm{C}$

22. (A)

Since both the small spheres are at same horizontal level, the electrostatic forces on both spheres are in horizontal direction. The FBD of left sphere is shown in figure

\because The sphere is in equilibrium
$\Rightarrow \mathrm{T} \cos \theta=\mathrm{mg}$ and $\mathrm{T} \sin \theta=\mathrm{F}_{\mathrm{E}}$
$\therefore \tan \theta=\frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{mg}}$
The magnitude of electrostatic force on each sphere is same irrespective of its charge
\therefore for $\theta_{1}=\theta_{2}$ the necessary condition is $\mathrm{m}_{1}=\mathrm{m}_{2}$
23. (C)

(a)

(b)

Velocity of the object is $v_{0}=(2 \hat{i}+2 \hat{j}) \mathrm{ms}^{-1}$
\therefore Speed of obejct is $\mathrm{v}_{0}=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} \mathrm{~ms}^{-1}$
\Rightarrow speed of the image $\left(v_{i}\right)$. The velocity v_{i} of the image will beas shown in Fig. (a) The relative velocity of the image with respect to the object is

$$
\Delta \mathrm{v}=\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{0}=\mathrm{v}_{1}+\left(-\mathrm{v}_{0}\right)
$$

The magnitude of Δv is given by [see Fig. (b)]
$\Delta v=\left[v_{0}^{2}+v_{1}^{2}-2 v_{0} v_{i} \cos 90^{\circ}\right]^{1 / 2}$
$=\left[(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}\right]^{1 / 2}$
$=4 \mathrm{~ms}^{-1}$ along ${ }^{-x}$ axis.
24. (B)

I_{1} is the image O due to refraction at face I
$\mathrm{AI}_{1}=\mu(\mathrm{OA})=1.5 \times 6=9 \mathrm{~cm}$
I_{2} is the image of I_{1} due to reflection at face ${ }_{I I}$. Since
$\mathrm{I}_{1} \mathrm{~B}=9+3=12 \mathrm{~cm}, \mathrm{I}_{2} \mathrm{~B}=12 \mathrm{~cm}$
I_{3} is the image of I_{2} due to refraction at Face I
again,
$\therefore \mathrm{AI}_{3}=\frac{\mathrm{I}_{2} \mathrm{~A}}{\mu}=\frac{15}{1.5}=10 \mathrm{~cm}$
\therefore Distance of I_{3} from $\mathrm{B}=10-3=7 \mathrm{~cm}$.
25. (C)
$\frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{2}{R}\right)=\frac{1}{R}\left(\because R_{1}=-R_{2}=R\right)$
which gives $f=R$. When the space between the lenses is filled with water, we have a concave water lens of $\mu_{\omega}=4 / 3$ surrounded by a medium of $\mu_{g}=3 / 2$. Therefore, for the watern lens.
$\frac{1}{f^{\prime}}=\left(\frac{4}{3}-1\right)\left(\frac{-2}{f}\right) \Rightarrow f^{\prime}=-\frac{3 f}{2}$
The focal length of the combination of the three lenses is given by
$\frac{1}{f_{e q}}=\frac{1}{f}+\frac{1}{f}-\frac{2}{3 f} \Rightarrow f_{e q}=\frac{3 f}{4}$
26. (A)

For no deviation, the ray must emerge from lens B parallel to the principal axis. For this to happen, point F must be at the second focus of lens A and at the the first focus of lens B. Hence $d=30+20=50 \mathrm{~cm}$, which is choice (a).
27. (B)

The value of the effective focal length F is given by
$\left|\frac{1}{F}\right|=\frac{1}{f_{1}}+\frac{1}{f_{m}}+\frac{1}{f_{1}}=\frac{2}{f_{1}}+\frac{1}{f_{m}}=\frac{2}{20}+\frac{2}{22}$
or $|F|=\frac{110}{21} \mathrm{~cm}$
Since the convex lens with a silvered surface behaves as a concave mirror of effective focal length F, we have

$$
F=-\frac{110}{21} \mathrm{~cm} \text { and } u=-10 \mathrm{~cm} \quad \frac{1}{v}-\frac{1}{-10}=-\frac{21}{110} \Rightarrow v=-11
$$

28. (D)

The focal length of a lens does not change if a part of it is blcoked. If the central part of the aperture upto $\mathrm{d} / 2$ is blocked, the exposed area of the aperture reduces by one-fourth the earlier area because

$$
\frac{\pi\left(\frac{\mathrm{d}}{2}\right)^{2}}{\mathrm{nd}^{2}}=\frac{1}{4}
$$

29. (D)

$$
\begin{aligned}
& \frac{10-2 \mathrm{t}}{6}=\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}} \\
& \Rightarrow \int_{0}^{0} \mathrm{dv}=\int_{0}^{\mathrm{t}}\left(\frac{10-2 \mathrm{t}}{6}\right) \mathrm{dt}
\end{aligned}
$$

$\Rightarrow \mathrm{t}=10 \mathrm{sec}$

$a=\frac{20-10}{6}=\frac{10}{6} \mathrm{~m} / \mathrm{s}^{2}$

$F^{\prime}-10=2 \times \frac{10}{6}$
$F^{\prime}=10+\frac{10}{3}=\frac{40}{3} N$
30. (B)

The system will be in equilibrium if the net force on charge q at one vertex due to charges q at the other two vertices is equal and opposite to the force due to charge Q at the centroid, i.e. (here a is the side of the triangle)
$\frac{\sqrt{3} q^{2}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}=-\frac{\mathrm{Qq}}{4 \pi \varepsilon_{0}\left(\frac{\mathrm{a}}{\sqrt{3}}\right)^{2}}$
which gives $Q=-\frac{q}{\sqrt{3}}$. Hence the correct choice is (b).
CHEMISTRY
31. (D)

$V_{i}=20+80=100, \quad V_{f}=20+40=60$
Reduction in volume $=V_{i}-V_{f}=100-60=40$
$\%$ Reduction in volume $=\frac{40}{100} \times 100=40 \%$
32. (C)

RMS speed does not depend upon the pressure.
$\overline{\mathrm{C}}_{2}=\sqrt{\frac{3 \mathrm{R} \times 3 \times 27}{\mathrm{M}}} \quad \therefore \quad \frac{\overline{\mathrm{C}}_{2}}{\overline{\mathrm{C}}_{1}}=\sqrt{3} \quad ; \overline{\mathrm{C}}_{1}=\sqrt{\frac{3 \mathrm{R} \times 27}{\mathrm{M}}}$ or $\overline{\mathrm{C}}_{2}=\sqrt{3} \overline{\mathrm{C}}_{1}=\sqrt{3} \times 10^{4} \mathrm{~cm} / \mathrm{sec}$
33. (D)

At the same temperature, oxygen and hydrogen molecules will have the same average energy; weight of H_{2} molecules is
$1 / 16$ of O_{2} molecules. So statements 2 and 4 are wrong.
34. (A)
$V_{c}=3 b$, assuming the gas to obey van der walls' equation.
$\therefore \mathrm{b}$ (the covolume) $=\frac{0.072}{3}=0.024$ litre mol^{-1}.
$b=\frac{24 \mathrm{~cm}^{3}}{6 \times 10^{23}}$ per molecule, where $N_{A} \approx 6 \times 10^{23}$
$\mathrm{b}=4 \times 10^{-23} \mathrm{~cm}^{3}$ per molecule $=4 \times \frac{4}{3} \pi \mathrm{r}^{3}$.
$\frac{4}{3} \pi r^{3}=10^{-23} ; r^{3}=\frac{3}{4 \pi} \times 10^{-23} ; r=\left(\frac{3}{4 \pi} \times 10^{-23}\right)^{\frac{1}{3}} \mathrm{~cm}$
35. (D)
n_{1} moles $=\frac{770 \times 10^{6}}{760 \times 300 \times 0.0821}=41.1 \times 10^{3}$ moles,

$$
\mathrm{n}_{2} \text { moles }=\frac{125 \times 10^{6}}{760 \times 260 \times 0.0821}=7.705 \times 10^{3} \text { moles }
$$

\therefore the weight of helium to be released $=(41.1-7.705) \times 10^{3}$ moles $=33.395 \times 10^{3}$
Moles which corresponds to heliun $=\left(33.395 \times 10^{3} \times 4\right) \mathrm{g}=1.3358 \times 10^{5} \mathrm{~g}=133.58 \mathrm{~kg}$.
36. (B)

For ideal gases,
$P V=n R T=\frac{m}{M} R T: \quad P=\frac{R T}{M}\left(\frac{m}{V}\right)=\frac{R T}{M} d$
(or) $M=R T\left(\frac{d}{P}\right)$.
Given : $d=2.00 P+0.020 P^{2}$ (for a real gas).
$\frac{d}{P}=2.00+0.040 P: P_{P \rightarrow 0}^{L t} \frac{d}{P}=2.00$, which is $\frac{d}{P}$ for an ideal gas.
Thus M $=$ RT $\times 2=25 \times 2=50 \mathrm{~g} \mathrm{Mol}^{-1}$.
37. (A)
$\mathrm{P}(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ as Isochoric process
($\mathrm{V}=$ constant)
$P=\frac{R}{(V-b)} T$
Slope $=\frac{R}{(V-b)}$ in P-T graph
38. (A)

$$
\begin{aligned}
& P_{\text {atm }}=P_{\text {gas }}+P_{\text {column }}+P_{\text {vapour }} \\
& \Rightarrow P_{\text {gas }}=760-\frac{240 \times 3.4}{13.6}-50=650 \mathrm{~mm} \text { of } \mathrm{Hg}=65 \mathrm{~cm} \text { of } \mathrm{Hg}
\end{aligned}
$$

39. (C)

Work is path function.
40. (C)

Surface tension does not depends on quantity taken.
41. (A)
(1) $C=C-C-C-C$
(2) $\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{C}$
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

42. (A)

Different number of carbon atoms in the parent chain.
43. (B)

Different number of carbon atoms in the parent chain.
44. (D)

45. (D)

2,4,6-Trinitrophenol is the most acidic isomer.
46. (C)
o-Toluic acid is the most acidic structural isomer of the given compounds.
47. (D)
(A) (I), (II) \& (IV) have different number of carbon atoms in the parent chain.
(B) (I) and (III) have same number of carbon in the parent chain but differ in the position of methyl group.
48. (B)

49. (C)
 have different number of carbon atoms in the parent chain.
50. (D)

Alcohol and Phenol are functional isomers.
51. (D)
52. (D)

Electrons in orbitals bearing a lower ' n ' value are more attrached to the nucleus then electrons in orbitals bearing a higher ' n ' value. Hence, the removal of electrons from orbitals bearing a higher ' n ' value is easier than the removal of electrons from orbitals having a lower ' n ' value.
53. (C)

Of the absence of 'd' orbitals in the valence shell of fluorine.
54. (A)
(A) After loss of one electron K^{+}becomes as noble gas (Argon) and not colour ion.
(B) ${ }_{1} \mathrm{Na}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{1}$
(C) ${ }_{29} \mathrm{Cu}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2}, 3 \mathrm{p}^{6}, 4 \mathrm{~s}^{1}, 3 \mathrm{~d}^{10}$
(D) ${ }_{24} \mathrm{Cr}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2}, 3 \mathrm{p}^{6}, 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$

55. (D)
56. (B)
57. (A)
lonic compound has high melting point and non-directional bonds.
58. (C)

When cation and anion combined to form 1 mole ionic solid is called lattice energy.
59. (B)
F_{2} is the most reactive due to its low bond energy and high hydration energy of F^{-}ion.
60. (D)

Solubility of fluorides of IIA
$\mathrm{BeF}_{2}>\mathrm{BaF}_{2}>\mathrm{SrF}_{2}>\mathrm{CaF}_{2}>\mathrm{MgF}_{2}$
(BeF_{2} is most soluble)

MATHEMATICS

61. (D)
$f(x+y+1)=(\sqrt{f(x)}+\sqrt{f(y)})^{2}$
Put $x=0, y=0 \Rightarrow f(1)=2^{2}$
put $x=1, y=0 \Rightarrow f(2)=3^{2} \ldots$
$f(x)=(x+1)^{2}$
62. (B)

$$
\begin{aligned}
& g(h(x))=x \\
& g^{\prime}(h(x)) h^{\prime}(x)=1 \\
& h^{\prime}(x)=\frac{1}{g^{\prime}(h(x))}=1+(h(x))^{2}+(h(x))^{3}
\end{aligned}
$$

63. (C)

Put $x=1+h$

$$
\begin{aligned}
& f(b)=\lim _{h \rightarrow 0}\left(\frac{(1+h)^{b}-b(1+h)+b-1}{(1+h-1)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{\left(1+h b+\frac{b(b-1)}{2!} h^{2}+\ldots\right)-b-b h+b-1}{h^{2}}
\end{aligned}
$$

$f(b)=\frac{b(b-1)}{2}$
$f(5)=10$
64. (B)
$f(g(x))=\frac{1}{\left(\frac{1}{x^{2}}-1\right)\left(\frac{1}{x^{2}}-2\right)}=\frac{x^{4}}{\left(1-x^{2}\right)\left(1-2 x^{2}\right)}$
$\Rightarrow f(g(x))$ is discontinuous at $x= \pm 1, x= \pm \frac{1}{\sqrt{2}}$ and $x=0$ since, $g(x)$ is discontinuous at $x=0$.
65. (A)
$f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}=\frac{f(8)-f(2)}{8-2} \geq 1$
$f(8)-f(2) \geq 6$
$f(8) \geq 6+f(2)$
$f(8) \geq 5$
66. (C)
$f(x)=(x-2)(x+2)|x+2||x-3|+\sin |x-1|$
$(x+2)|x+2|$ is differentiable at $x=-2$
$|x-3|$ is not differentiable at $x=3$
$\sin (|x-1|)$ is non-differentiable at $x=1$
Hence $f(x)$ is differentiable at $x=-2$ but not at $x=1 \& 3$.
67. (C)

$$
\begin{aligned}
& y=e^{\lim _{x \rightarrow x_{2}} \frac{\sin \left(a\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\right)}{a\left(x-x_{1}\right)\left(x-x_{3}\right)}} x \frac{1}{\left(x-x_{2}\right)} \times a\left(x-x_{1}\right)\left(x-x_{3}\right) \\
& =e^{a\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}
\end{aligned}
$$

68. (B)
69. (B)

Taking $x=y=1$, we get

$$
\begin{aligned}
& f(1) f(1)-f(1)=6 \\
& \Rightarrow(f(1)+2)(f(1)-3)=0(f(1)>0) \\
& \Rightarrow f(1)=3 \\
& \text { put } y=1 \\
& f(x) f(1)-f(x)=4 x+2 \\
& 2 f(x)=4 x+2 \\
& f(x)=2 x+1 \\
& f^{-1}(x)=\frac{x-1}{2} \\
& f(x) f^{-1}(x)=\frac{(2 x+1)(x-1)}{2} \\
& \quad=\frac{2 x^{2}-x-1}{2}
\end{aligned}
$$

70. (C)

Let $y=\lim _{t \rightarrow \infty}\left(\left(\frac{f\left(5+\frac{1}{t}\right)}{f(5)}\right)^{t}\right)$
$\log y=\lim _{t \rightarrow \infty} t\left(\log f\left(5+\frac{1}{t}\right)-\log f(5)\right)$
$=\lim _{t \rightarrow \infty} \frac{\log f\left(5+\frac{1}{t}\right)-\log f(5)}{\frac{1}{t}}=\lim _{t \rightarrow \infty} \frac{1}{f\left(5+\frac{1}{t}\right)} \frac{f^{\prime}\left(5+\frac{1}{t}\right)\left(-\frac{1}{t^{2}}\right)}{-\frac{1}{t^{2}}}$
$=\frac{5}{10}=\frac{1}{2}$
$y=e^{\frac{1}{2}}$
71. (B)

$$
g^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(|h|)-|\sinh |-f(0)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(|h|)-f(0)}{h}-\lim _{h \rightarrow 0} \frac{\sinh }{h} \\
& =1-1=0 \\
g^{\prime}\left(0^{-}\right) & =\lim _{h \rightarrow 0} \frac{f(|-h|)-|\sin (-h)|-f(0)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{-h}+\lim _{h \rightarrow 0} \frac{\sinh }{h} \\
& =-1+1=0
\end{aligned}
$$

72. (C)
$0 \leq f(x)<\frac{\pi}{2}$
$0 \leq \tan ^{-1}\left(\mathrm{x}^{2}+\mathrm{x}+\lambda\right)<\frac{\pi}{2}$
$0 \leq x^{2}+x+\lambda<\infty$
$\Rightarrow \mathrm{D} \leq 0$
$1-4 \lambda \leq 0$
$4 \lambda \geq 1$
$\lambda \geq \frac{1}{4}$
73. (D)
74. (C)
$g(x)$ must be linear $\Rightarrow g(x)=a x+b$

$$
\begin{align*}
& g(1)=a+b=3 \tag{I}\\
& g(7)=7 a+b=15 \tag{II}
\end{align*}
$$

From (I) \& (II)

$$
a=2
$$

$$
b=1
$$

$g(x)=2 x+1$
$g(6)=13$
75. (C)

Equation of normal is $y=m x-2 a m-a m^{3}, \quad 4 a=\frac{1}{4}$

$$
a=\frac{1}{16}
$$

$y=m x-\frac{1}{8} m-\frac{1}{16} m^{3}$ it passes through $(a, 0)$
$0=16 m a-2 m-m^{3}$
$m\left(16 a-2-m^{2}\right)=0$
$\Rightarrow 16 \mathrm{a}-2>0$
a $>\frac{1}{8}$
76. (A)
$4 \mathrm{~A}=2 \mathrm{a}$

$$
2 \mathrm{~A}=\mathrm{a}=\frac{2 \times 3 \times 2}{3+2}=\frac{12}{5}
$$

$4 \mathrm{~A}=\frac{24}{5}$
77. (D)
$y=m x+\frac{8}{m}$
$x\left(m x+\frac{8}{m}\right)=-2$
$m^{2} x^{2}+8 x=-2 m$
$m^{2} x^{2}+8 x+2 m=0$
$D=0 \Rightarrow 64-8 m^{3}=0$
$\mathrm{m}=2$
$y=2 x+4$
78. (B)

The parabola $y=x^{2}+p x+q$ cuts the straight line $y=2 x-3$ at a point with abscissa 1 . Therefore, $\mathrm{y}=2-3=-1$.
So, the point is $(1,-1)$. This point lies on the parabola.
Therefore,

$$
\begin{equation*}
-1=1+p+q \text { or } p+q=-2 \tag{i}
\end{equation*}
$$

Distance between vertex and x-axis $=\frac{p^{2}}{4}-q$

$$
\begin{aligned}
& =\frac{p^{2}}{4}+p+2 \\
& =\frac{1}{4}\left\{(p+2)^{2}+4\right\}
\end{aligned}
$$

For minimum, $\mathrm{p}=-2$.
Hence, $q=0$.
79. (C)

Equation of the tangent
$2 y=2 x+2$
$y-x-1=0$
Let (h, k) be image of the point $\left(t^{2}, 2 t\right)$ in $x-y+1=0$ is given by
$\frac{h-t^{2}}{1}=\frac{k-2 t}{-1}=\frac{-2\left(t^{2}-2 t+1\right)}{1+1}$
$h=t^{2}-2 t^{2}+2 t-1$

$h=2 t-1$
$k=2 t+t^{2}-2 t+1$
$k=t^{2}+1$
$4(k-1)=(h+1)^{2}$
80. (A)

Let $\mathrm{A}\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at} \mathrm{t}_{1}\right)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{at}_{3}^{2}, 2 \mathrm{at}_{3}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
Normals at A, B, C meet at point (h, k).
t_{1}, t_{2}, t_{3} are roots of the equation
$a t^{3}+(2 a-h) t-k=0 ; t_{1}+t_{2}+t_{3}=0$
$\mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{3} \mathrm{t}_{1}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} ; \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=\frac{\mathrm{k}}{\mathrm{a}}$
$\frac{x_{1}-x_{2}}{y_{3}}+\frac{x_{2}-x_{3}}{y_{1}}+\frac{x_{3}-x_{1}}{y_{2}}=0$
81. (A)
$y^{2}=8 x\left(\frac{y-m x}{c}\right)$
$c y^{2}=8 x y-8 m x^{2}$
$8 m x^{2}+c y^{2}-8 x y=0$
$8 m+c=0 \quad \Rightarrow c=-8 m$
82. (D)

Let $y=m x+\frac{2 a}{m}$ be the tangent to the parabola
$y m=m^{2} x+2 a$
$m^{2} x-y m+2 a=0 \quad$ it passes through (2a, 2b)
$2 a m^{2}-2 b m+2 a=0$
$\mathrm{am}^{2}-\mathrm{bm}+\mathrm{a}=0$
$b^{2}-4 a^{2}>0$
$b^{2}>4 a^{2}$
83. (D)

Equation of circle
$x^{2}+(y-h)^{2}+\lambda x=0$
it passes through $\mathrm{A}(2,0)$ and $\mathrm{B}(6,0)$
$4+h^{2}+2 \lambda=0$
$36+h^{2}+6 \lambda=0$
$\Rightarrow \mathrm{h}=2 \sqrt{3}$
84. (D)

$$
\begin{aligned}
& 9+16-12-24+c<0 \\
& \Rightarrow c<11 \\
& \& \sqrt{13-c}<2 \\
& 13-c<4 \\
& c>9 \\
& \Rightarrow c \in(9,11)
\end{aligned}
$$

85. (C)

B lies on circles

$\left(\frac{h+3}{2}-3\right)^{2}+\frac{k^{2}}{4}+\frac{4 k}{2}=0$
$(h-3)^{2}+k^{2}+8 k=0$
$(x-3)^{2}+y^{2}+8 y=0$
86. (C)

Equation of chord of contact
$\mathrm{x} \alpha+\mathrm{y}\left(\frac{12-3 \alpha}{4}\right)=4$
Let mid point $b(h, k)$
$x h+y k=h^{2}+k^{2}$
From (i) \& (ii)

$$
\begin{aligned}
& \frac{\alpha}{h}=\frac{12-3 \alpha}{4 k}=\frac{4}{h^{2}+k^{2}} \\
& \alpha=\frac{4 h}{h^{2}+k^{2}} \\
& 12-3 \alpha=\frac{16 k}{h^{2}+k^{2}}
\end{aligned}
$$

$$
12\left(h^{2}+k^{2}\right)-12 h=16 k
$$

$$
\begin{aligned}
& \mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{h}-\frac{4}{3} \mathrm{k}=0 \\
& \mathrm{OP}=\sqrt{\frac{1}{4}+\frac{4}{9}} \\
& \quad=\frac{5}{6}
\end{aligned}
$$

87. (B)

$$
|1-|x||=7^{-|x|}
$$

from the graph

88. (A)
$P A+P B=P A+P B '$ will be
minimum if the points A, P, B^{\prime} are collinear.
Equation of $A B^{\prime}$

$y-3=\frac{13-3}{7-4}(x-4)$
$y-3=\frac{10}{3}(x-4)$
$3 y-9=10 x-40$
P is point of intersection of $y=x$ and (i)
$7 x=31$
$x=\frac{31}{7}, y=\frac{31}{7}$
89. (A)

The line $y=\sqrt{3} x$ can be written as $x=\frac{r}{2}, y=\frac{r \sqrt{3}}{2}$. If this line cuts the given curve, then

$$
\frac{r^{4}}{16}+\frac{a r^{3} \sqrt{3}}{8}+\frac{b r^{2} \sqrt{3}}{4}+\frac{c r}{2}+\frac{d r \sqrt{3}}{2}+6=0
$$

Therefore, $\frac{1}{12} \mathrm{OA} \cdot \mathrm{OB} \cdot \mathrm{OC} \cdot \mathrm{OD}=\frac{1}{12}\left|r_{1} r_{2} r_{3} r_{4}\right|=8$
90. (C)

Let perpendicular bisector of $A B$ is $3 x+4 y-20=0$
and perpendicular bisector of $A C$ is $8 x+6 y-65=0$.
Image of A w.r.t. $3 x+4 y-20=0$ is B
and image of A w.r.t. $8 x+6 y-65=0$ is C.
For $B, \quad \frac{x-10}{3}=\frac{y-10}{4}=-2\left(\frac{30+40-20}{25}\right)$
$\Rightarrow \quad B=(-2,-6)$
For $C, \quad \frac{x-10}{8}=\frac{y-10}{6}=-2\left(\frac{80+60-65}{100}\right)$
$\Rightarrow \quad \mathrm{C}=(-2,1)$

Area of $\Delta A B C=\frac{1}{2}(10+2)(1+6)=42$.

