SOLUTIONS

PROGRESS TEST-4(A)

 RB-1801 To 1807 RBK-1801 To 1803 (JEE ADVANCED PATTERN) Test Date: 23-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800|7544015993/4/6/7

PHYSICS

1. Given $E=\frac{q}{4 \pi \varepsilon_{0} x^{2}}$.

Hence the magnitude of the electric intensity at a distance $2 x$ from charge q is
$E^{\prime}=\frac{q}{4 \pi \varepsilon_{0}(2 x)^{2}}=\frac{q}{4 \pi \varepsilon_{0} x^{2}} \times \frac{1}{4}=\frac{E}{4}$
Therefore, the force experienced by a similar charge q at a distance $2 x$ is
$F=q E^{\prime}=\frac{q E}{4}$
\therefore (D)
2. Net force on any charge $=0$. Force on any charge Q at end
$F=K \frac{Q^{2}}{4 x^{2}}+\frac{K q Q}{x^{2}}=0$. Hence, $q=\frac{-Q}{4}$
\therefore (A)
3. $\mathrm{T}_{1}=\frac{2 u \sin \theta}{\mathrm{~g}}, \mathrm{~T}_{2}=\frac{2 \mathrm{u} \cos \theta}{\mathrm{g}}$ and $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \Rightarrow \mathrm{R}=\frac{\mathrm{T}_{1} \mathrm{~T}_{2} g}{2}$
\therefore (B)
4. Let after t second particle will reach at P again,
$\therefore \quad$ area of $v-t$ curve $=0$
$\frac{1}{2} \times 2 \times 8-\frac{1}{2} \times(\mathrm{t}-8) \times(\mathrm{t}-8) \times 1=0$
$(t-8)^{2}=16$
$\mathrm{t}-8=4$
$\mathrm{t}=12 \mathrm{~s}$

\therefore (C)
5. (C)

$$
\begin{aligned}
\frac{1}{20} & =(\mu-1)\left(\frac{1}{R}-\frac{1}{-R}\right) \\
& =\frac{1}{f}=(\mu-1)\left(\frac{1}{R}-\frac{1}{\infty}\right) \\
& f=40 \mathrm{~cm}
\end{aligned}
$$

6. $\quad \Sigma F_{y}=0, R=m a$

$$
m g=\mu R=\mu m a
$$

$\mu=\frac{g}{a}=0.5$

\therefore (C)
7. $E=\frac{Q z}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}$, for $z \ll R \quad F \propto x$ also force is towards centre of ring.
$\therefore(A)(C)$
8. In equilibrium position, if x_{0} is stretch of spring then $k x_{0}=q E$ or $x_{0}=\frac{q E}{k}$

If x_{m} is maximum stretch of spring, $\quad \frac{1}{2} k x_{m}^{2}=q E x_{m} \quad$ or $\quad x_{m}=\frac{2 q E}{k}$
Amplitude will be $x_{m}-x_{0}=\frac{2 q E}{k}-\frac{q E}{k}=\frac{q E}{k}$
$\therefore \quad(\mathrm{A}, \mathrm{B}, \mathrm{C})$
9. Area $=\frac{1}{2} \times 10 \times(6+4)=\frac{v^{2}}{2}$
$v=10 \mathrm{~m} / \mathrm{s}$
Area upto $30 \mathrm{~m}=\frac{1}{2} \times 30 \times 6=\frac{v^{2}}{2}$
$v^{2}=180$

$v_{\text {max }}=\sqrt{80}<14$
\therefore (B) and (C)
10. $v_{x}=3 \mathrm{~m} / \mathrm{s}$
$a_{x}=-1.0 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \quad v_{x}^{2}=u_{x}^{2}+2 a_{x} \cdot x$
or $0=(3)^{2}+2(-1)(x)$ or $x=4.5 \mathrm{~m}$

Also $v_{x}=u_{x}+a_{x} t$

$$
\begin{gathered}
0=3-(1.0) t \text { or } \mathrm{t}=3 \mathrm{~s} \\
y=u_{y} t+\frac{1}{2} a_{y} t^{2}=0+\frac{1}{2}(-0.5)(3)^{2}=-2.25 \mathrm{~m}
\end{gathered}
$$

and $v_{y}=a_{y} t=(-0.5)(3)=-1.5 \mathrm{~m} / \mathrm{s}$
$\therefore \quad \vec{v}=v_{x} \hat{i}+v_{y} \hat{j}=0-1.5 \hat{j}=(-1.5 \hat{j}) \mathrm{m} / \mathrm{s}$
and

$$
\vec{r}=x \hat{i}+y \hat{j}=(4.5 \hat{i}-2.25 \hat{j}) \mathrm{m}
$$

$\therefore \quad(B)$ and (C)
11. For maxima path difference $=n \lambda$

If $d=$ path difference between waves reaching point $O=7 \lambda$
O will be maxima.
For $d=\lambda$ only one maxima at O is possible, the screen being finite.
\therefore (C) and (D)
12. If the image is real and magnified means object is between f and $2 f$.

When lens immersed in water focal length, $\quad f_{1}=\frac{(\mu-1)}{\left(\frac{\mu}{\mu_{r}}-1\right)} f=4 f$
Now object is between pole and focus so image is virtual and magnified.
$\therefore \quad(A)$ and (C)
13. Friction maximum $=24 \mathrm{~N}$

So net applied force on P is less than $f_{\text {max }}$.
Hence acceleration is zero and $T_{A}=20 \mathrm{~N}, T_{B}=40 \mathrm{~N}$
Contact force $=\sqrt{N^{2}+(f)^{2}}=\sqrt{(40)^{2}+(20)^{2}}=20 \sqrt{5} \mathrm{~N}$
$\therefore \quad(A)(B)(C)$ and (D)
14. Net upward force on three spheres applied by bottom

$$
=3 m g+\frac{3}{4} m g=\frac{15 m g}{4}
$$

For sphere $A, N \sqrt{3}=m g+\frac{m g}{4}, N=\frac{5 m g}{4 \sqrt{3}}$

\therefore (B) and (D)
15. (D)
16. (C)
17. As displacement along y-axis is zero, $k=-V_{y}=-10$
\therefore (B)
18. $\tan \alpha=\frac{u_{y}}{u_{x}}=1$
$\therefore \quad(A)$

CHEMISTRY

19. (B)
$\frac{P_{r} V_{r}}{T_{r}}=2.21$
$\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{C}}} \times \frac{\mathrm{V}}{\mathrm{V}_{\mathrm{C}}} \times \frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}}=2.21$
$\frac{\mathrm{PV}}{\mathrm{T}} \times \frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}}=2.21$
$v=0.1243 \mathrm{~L}=124.31 \mathrm{~mL}$
20. (B)

iso-octane (common name)
IUPAC name : 2,2,4-Trimethylpentane.
21. (A)

Homolytic fission :The cleavage of a bond is homolytic fission, so that each of the molecular fragments between which the bond is broken retains one of the bonding electrons.

22. (A)

IUPAC Name : 3-Methylphenol
23. (B)

$-\mathrm{NO}_{2}(-\mathrm{M},-\mathrm{I})$ Increases acidic strength as compared to phenol
24. (D)

25. (B, C, D)

$$
\mathrm{xSn}^{2+}+\mathrm{yCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{zH}^{+} \longrightarrow \mathrm{aSn}^{4+}+\mathrm{bCr}^{3+}+\mathrm{cH}_{2} \mathrm{O}
$$

Upon balancing the redox-reaction
$3 \mathrm{Sn}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
26. (A,B,D)

Non-aromatic

Non-planer (i.e., Non-aromatic)

27. (A, C, D)
28. (A), (B)

Nitrogen molecule has 14 electrons. So the electron distributed in molecular orbital as below: [(\star) star indicated for anti bonding]

$$
\mathrm{N}_{2}=\sigma 1 s^{2}, \sigma_{1}^{\star} s^{2}, \sigma 2 s^{2}, \sigma_{2}^{\star} s^{2}\left[\pi 2 p_{x}^{2}, \pi 2 p_{y}^{2}\right] \sigma 2 p_{z}^{2}
$$

Where:
$\mathrm{Nb}=$ Nos of bonding electrons
$\mathrm{Na}=$ Nos. non-bonding electrons
$\mathrm{N}_{2}-$ bond order $=\frac{10-4}{2}=3$
$\mathrm{N}_{2}^{+}-$bond order $=\frac{9-4}{2}=2.5$
Oxygen molecule has 16 electron, so the electron distributed in molecules orbital as below.
$\mathrm{O}_{2}=\sigma 1 \mathrm{~s}^{2}, \sigma_{1}^{\star} \mathrm{s}^{2}, \sigma 2 \mathrm{~s}^{2} \sigma_{2}^{\star} \mathrm{s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right]\left[\pi_{2}^{\star} \mathrm{p}_{\mathrm{x}}^{1}=\pi_{2}^{\star} \mathrm{p}_{\mathrm{y}}^{1}\right]$
$\mathrm{O}_{2}-$ Bond order $=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{+}-$Bond order $=\frac{10-5}{2}=2.5$
Bond dissociation α bond order
Bond length $\alpha \frac{1}{\text { Bond order }}$
29. (A), (B), (C)
CsBr_{3} contains Cs^{+}and Br_{3}^{-}ions. due to energy effect (large cation stablise by large anion)
(A) $\mathrm{Cs}_{\mathrm{Br}}^{3}-\mathrm{Cs}^{+}+3 \mathrm{Br}^{-}$
(B)

(C)

(D)

30. (A), (B), (C), (D)
31. (A,B,C)
32. (C,D)
(C) $\underbrace{\text { (Acidic strength due to ortho effect in (I). }}_{\text {(I) }}$
(D)

$$
(+\mathrm{H},+\mathrm{I})
$$

(II)
(I) is more stable than (II) due to +H-effect)
33. (C)
34. (D)
35. (C)

Only (C) has unpaired electron.
36. (A)

$\mathrm{sp}^{3}-\mathrm{C}$ (non bonding
electron in
sp^{3} hybrid orbital)
that why pyramidal in shape

MATHEMATICS

37. (C)
$f(x)=[x]^{2}-\left[x^{2}\right]= \begin{cases}0, & 0 \leq x<\sqrt{2} \\ -1, & \sqrt{2} \leq x<\sqrt{3} \\ -2, & \sqrt{3} \leq x<2 \\ 0, & x=2\end{cases}$
$\therefore \quad$ Range of $f(x)$ is $\{-2,-1,0\}$.
38. (C)
$e x+y=a$
$\mathrm{e}=\frac{2}{3}, \mathrm{a}=\frac{10}{3}$
39. (B)
(i) When $0 \leq x<1$
$f(x)$ doesn't exist as $[\mathrm{x}]=0$ here.
(ii) Also $\lim _{x \rightarrow I+} f(x)$ and $\lim _{x \rightarrow I-} f(x)$ does not exist.

Hence $f(x)$ is discontinuous at all integers and also in $(0,1)$
40. (D)
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h e^{-\left(\frac{1}{h}+\frac{1}{h h}\right)}-a}{h}$
$f^{\prime}(0+0)=\lim _{h \rightarrow 0} \frac{h e^{-\left(\frac{1}{h}+\frac{1}{h}\right)}-a}{h}=\lim _{h \rightarrow 0} \frac{h \cdot e^{-2 / h}-a}{h}=0-\lim _{h \rightarrow 0} \frac{a}{h}=0$
provided $\mathrm{a}=0$
Also, $f^{\prime}(0-0)=\lim _{h \rightarrow 0} \frac{-h e^{-\left(-\frac{1}{h}+\frac{1}{h}\right)}-a}{-h}=1+\lim _{h \rightarrow 0} \frac{a}{h}=1$, provided $a=0$
Thus $f(x)$ can't be made differentiable at $\mathrm{x}=0$.
41.
(B)
$\lim _{x \rightarrow 0} \frac{\tan \left(\left[-\pi^{2}\right] x^{2}\right)-\tan \left(\left[-\pi^{2}\right]\right) \cdot x^{2}}{\sin ^{2} x}$
Since $9<\pi^{2}<10$

$$
\begin{aligned}
& \therefore \quad-10<-\pi^{2}<-9 ; \therefore \quad\left[-\pi^{2}\right]=-10 \\
& =\lim _{x \rightarrow 0} \frac{\tan \left(-10 x^{2}\right)-\tan (-10) \cdot x^{2}}{\sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{-\tan \left(10 x^{2}\right)+\tan (10) \cdot x^{2}}{x^{2} \cdot \frac{\sin ^{2} x}{x^{2}}}=\lim _{x \rightarrow 0}\left[\tan 10-\left(\frac{\tan \left(10 x^{2}\right)}{10 x^{2}}\right) \cdot 10\right]=\tan 10-10
\end{aligned}
$$

42. (C)

We take A as the origin and $A B$ and $A C$ as x-axis and y-axis respectively.

$$
\text { Let } A P=h, A Q=k
$$

Equation of the line $P Q$ is
$\frac{x}{h}+\frac{y}{k}=1$

Given, $B P . C Q=A B^{2}$
$\Rightarrow(h-a)(k-a)=a^{2} \Rightarrow h k-a k-a h+a^{2}=a^{2}$ or $a k+h a=h k$
or $\quad \frac{a}{h}+\frac{a}{k}=1$
From (ii), it follows that line (i) i.e. PQ always passes through a fixed point (a, a).
43. (B, D)

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{6^{k}}{\left(3^{k}-2^{k}\right)\left(3^{k+1}-2^{k+1}\right)}=\sum_{k=1}^{n}\left[\left(\frac{3^{k}}{3^{k}-2^{k}}\right)-\left(\frac{3^{k+1}}{3^{k+1}-2^{k+1}}\right)\right] \\
& \quad=\left(\frac{3}{3-2}-\frac{3^{2}}{3^{2}-2^{2}}\right)+\left(\frac{3^{2}}{3^{2}-2^{2}}-\frac{3^{3}}{3^{3}-2^{3}}\right)+\left(\frac{3^{3}}{3^{3}-2^{3}}-\frac{3^{4}}{3^{4}-2^{4}}\right)+ \\
& \quad \ldots \ldots+\left(\frac{3^{n}}{3^{n}-2^{n}}-\frac{3^{n+1}}{3^{n+1}-2^{n+1}}\right)
\end{aligned}
$$

$=3-\frac{3^{n+1}}{3^{n+1}-2^{n+1}}$
Required limit $=\lim _{n \rightarrow \infty}\left(3-\frac{3^{n+1}}{3^{n+1}-2^{n+1}}\right)=3-1=2$
44. (A, B, C)
45. (A, B)

Required locus is tangent to $y^{2}=4 x$ at $(1,2) \quad y=x+1$
46. (A, B, C)
47. (A, B, C)
$f\left(\frac{3}{2}\right)=\frac{9}{4} ; f\left(\frac{9}{4}\right)=2 \times \frac{9}{4}-3=\frac{3}{2}$
$f\left(\frac{5}{2}\right)=2 ; f(2)=1 ; f(1)=1$
48. (A, B, D) $y^{2}=4(x-h)$ pass through $(0,2)$ and $(0,-2)$
49. (B)

Let $A \equiv(0,0)$ and $B \equiv\left(r_{1}+r_{2}, 0\right)$ be the centres of the two given fixed circles.
Let $C \equiv(\alpha, 0)$ be the point of intersection of direct common tangents.
Now, $\frac{r_{2}}{r_{1}}=\frac{\alpha-\left(r_{1}+r_{2}\right)}{\alpha} \Rightarrow r_{2} \alpha=r_{1} \alpha-r_{1}^{2}-r_{1} r_{2} \Rightarrow \alpha=\frac{r_{1}^{2}+r_{1} r_{2}}{r_{1}-r_{2}}$
\therefore Locus of C is $x=\frac{r_{1}^{2}+r_{1} r_{2}}{r_{1}-r_{2}}=a$ constant, which is a straight line.

50. (A)

The given circle is $(x+1)^{2}+(y+2)^{2}=9$ has radius $=3$
The points on the circle which are nearest and farthest to the point $P(a, b)$ are Q and R respectively (see fig.)

Thus, the circle centred at Q having radius $P Q$ will be the smallest required circle while the circle centred at Q having radius $P R$ be the largest required circle. Hence, difference between their radii $=P R-P Q=Q R=6$.
51. (B)
52. (A)

Centre is (h, k)
$(x-h)^{2}+(y-k)^{2}=5$ pass through $(0,0)$
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are foci
$\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{y}_{1} \mathrm{y}_{2}=1$
53. (A)
54. (D)
$f(x)=\left\{\begin{array}{cc}0 ; & 0 \leq x<1 \\ x ; & 1 \leq x<2 \\ 2(x-1) ; & 2 \leq x<3 \\ 6 ; & x=3\end{array}\right.$

