SOLUTIONS

PHASE TEST-2

GRA

JEE MAIN PATTERN

Test Date: 23-09-2017

Mentors Eduserv"'

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office: Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. (B)

$$
\frac{\Delta T}{T} \times 100=\frac{\frac{1}{5}}{25} \times 100=0.8 \%
$$

2. (D)
$\frac{d|\vec{v}|}{d t}$ is the tangential acceleration.
3. (A)

Let after time t, the velocity of particle B is directed at an angle θ with the horizontal, then

$$
\begin{aligned}
& -\frac{d s}{d t}=b t-a t \cos \theta \\
& \Rightarrow-\int_{1}^{0} d s=b \int_{0}^{t} t d t-a \int_{0}^{t} t \cos \theta d t
\end{aligned}
$$

and $\frac{1}{2} \mathrm{at}^{2}=\mathrm{b} \int_{0}^{\mathrm{t}} \mathrm{t} \cos \theta \mathrm{dt} \quad \therefore \mathrm{I}=\frac{\mathrm{bt}^{2}}{2}-\frac{\mathrm{a}^{2} \mathrm{t}^{2}}{2 \mathrm{~b}}$

$$
t=\sqrt{\frac{2 b l}{b^{2}-a^{2}}}, \quad S=\frac{1}{2} b^{2}=\frac{1}{2} b \frac{2 b l}{b^{2}-a^{2}}=\frac{b^{2} I}{b^{2}-a^{2}} .
$$

4. (B)

Let 1: Block, 2: Platform

$$
\begin{aligned}
& \overrightarrow{\mathrm{u}}_{12}=\overrightarrow{\mathrm{u}}_{1}-\overrightarrow{\mathrm{u}}_{2}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{u}}_{12}=\overrightarrow{\mathrm{a}}_{1}-\overrightarrow{\mathrm{a}}_{2}=-\frac{3}{5}(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \\
& \therefore \quad \mathrm{t}_{0}=\frac{5}{3} \text { sec, } \overrightarrow{\mathrm{s}}_{12}=\frac{25}{6}\left(\frac{3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}}{5}\right) \mathrm{m} \\
& \therefore \quad \overrightarrow{\mathrm{~s}}_{\mathrm{k}}=\frac{5}{6}(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}})+\frac{20}{3} \hat{\mathrm{j}} \\
& \quad=\frac{5}{6}(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})+\frac{20}{3} \hat{\mathrm{j}} \\
& \therefore \quad \overrightarrow{\mathrm{~s}}_{\mathrm{k}}=\frac{25}{6} \mathrm{~m} .
\end{aligned}
$$

5. (B)

Acceleration of block m with respect to inclined plane $=6$
\therefore Acceleration of incline plane $\mathrm{a}_{2}=\frac{\mathrm{m}}{\mathrm{m}+2 \mathrm{~m}} \times 6 \sin 60^{\circ}=\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$.
6. (B)

Let the particle leaves the vertical circular motion at an angle ϕ with the upward vertical.
Then critical velocity at angle ϕ is given by

$$
\begin{aligned}
& \quad v_{C}=\sqrt{g l \cos \phi} \\
& \therefore \quad l+l \cos \phi+\frac{g l \cos \phi \sin ^{2} \phi}{2 g}=\frac{27 l}{16} \\
& 1+\cos \phi+\frac{\cos \phi\left(1-\cos ^{2} \phi\right)}{2}=\frac{27}{16} \\
& 2+2 \cos \phi+\cos \phi-\cos ^{3} \phi=\frac{27}{8} \\
& \quad \cos ^{3} \phi-3 \cos \phi+\frac{11}{8}=0 \Rightarrow \cos \phi=\frac{1}{2} \quad \text { or } \quad \phi=60^{\circ} . \\
& \\
& v_{C}=\sqrt{\frac{g l}{2}} .
\end{aligned}
$$

7. (A)

$$
\frac{1}{2} k\left(\frac{h}{4}\right)^{2}=m g\left(h+\frac{h}{4}\right), \quad k=\frac{32 m g}{h}\left(\frac{5}{4}\right)=\frac{40 m g}{h} .
$$

8. (D)

Momentum of the shell at highest point $=2 m(u \cos \theta)$. As one fragment has initial speed zero (stationary) and hence the other fragment of mass m has velocity component ($2 u \cos \theta$) in horizontal direction. This will move under gravity, So, it will fall at a distance which is equal to

$$
\left(\frac{u \sin \theta}{g}\right)(2 u \cos \theta)=\frac{u^{2} \sin 2 \theta}{g}=R
$$

Hence, distance covered from the gun $=\frac{R}{2}+R=\frac{3}{2} R=\frac{3}{2}\left[\frac{u^{2} \sin 2 \theta}{g}\right]$.
9. (B)

From Newton's third law, force F will act on the block in forward direction
Acceleration of block $a_{1}=\frac{F}{M}$
retardation of bullet $a_{2}=\frac{F}{m}$
relative retardation of bullet

$$
a_{r}=a_{1}+a_{2}=\frac{\mathrm{F}(\mathrm{M}+\mathrm{m})}{\mathrm{Mm}}
$$

Applying $v^{2}=u^{2}-2 a_{l}$

$$
0=v_{0}^{2}-\frac{2 \mathrm{~F}(\mathrm{M}+\mathrm{m})}{\mathrm{Mm}} . \mathrm{I} \quad \text { or } \quad v_{0}=\sqrt{\frac{2 \mathrm{Fl}(\mathrm{M}+\mathrm{m})}{\mathrm{Mm}}}
$$

Therefore, minimum value of v_{0} is

$$
\sqrt{\frac{2 \mathrm{Fl}(\mathrm{M}+\mathrm{m})}{\mathrm{Mm}}}
$$

10. (B)
$O P>O C>O Q$
$\therefore V_{P}>V_{C}>V_{Q}$
11. (C)

$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\Rightarrow \mathrm{MK}_{1}^{2} \omega_{1}=\mathrm{MK}_{2}^{2} \omega_{2} \Rightarrow \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}}=\sqrt{\frac{\omega_{2}}{\omega_{1}}}$.
12. (C)

Clearly, the block shall topple about its edge through O. The torque FL of the applied force is clockwise. The torque $\frac{\mathrm{mgL}}{2}$ of the weight is anti-clockwise. Applying condition for rotational equilibrium $-\mathrm{FL}+\mathrm{mg} \frac{\mathrm{L}}{2}=0$ or $\mathrm{F}=\frac{\mathrm{mg}}{2}$.
13. (B)

According to law of conservation of energy

$$
\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)=M g h \text { or } h=\frac{3 v^{2}}{4 g} .
$$

14. (B)

$$
\begin{aligned}
& y=0.2\left(\cos ^{2} \frac{\pi t}{2}-\sin ^{2} \frac{\pi t}{2}\right) \\
& y=0.2 \cos \pi t \\
& \therefore \quad A=0.2, T=\frac{2 \pi}{\pi}=2 \mathrm{~s} .
\end{aligned}
$$

15. (C)
$F_{R}=M a=-(k x+A \sigma g x) ; \omega=\sqrt{\frac{k+A \sigma g}{M}} ; \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}+\mathrm{A} \sigma \mathrm{g}}}$.
16. (A)
17. (D)
$\frac{E_{A}}{E_{B}}=\frac{r_{B}}{r_{A}}=\frac{2}{1}$.
18. (A)

Total energy $=-$ kinetic energy $=-E$
So energy E should be supplied.
19. (D)

The maximum length of the string which can fit into the cube is $\sqrt{3} a$, equal to its body diagonal.
The maximum charge inside the cube is $\sqrt{3} a \lambda$, and hence the maximum flux through the cube is $\frac{\sqrt{3} \lambda a}{\varepsilon_{0}}$
20. (C)
$\tan 30^{\circ}=\frac{1}{2} \tan \theta, \tan q=\frac{2}{\sqrt{3}}$.
21. (B)

The simplified circuit can be drawn as

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7
22.
(B)

By symmetry, the p.d. across C_{2} is 6 V
$\therefore \quad \mathrm{U}_{2}=\frac{1}{2} \times\left(10^{-6}\right) \times 36=\left(18 \times 10^{-6}\right) \mathrm{J}$
23. (A)

$\frac{x-6}{600}+\frac{x-1.5}{200}+\frac{x-4.5}{300}=0 \Rightarrow x=3.25 V$
24. (C)
25. (D)
26. (C)
27. (A)
28. (D)

$$
i_{g}(G+R)=V, 10^{-3}(400+R)=8, R=7600 \Omega
$$

29. (A)

Equivalent ciruit is balanced Wheat- stone bridge as shown
$R_{A B}=\frac{10}{3} \Omega$.
30. (A)
$R_{\text {Voltmeter }}=6 \Omega, R_{\text {ammeter }}=0.5 \Omega$
$R_{\text {eq }}=10 \Omega$
$I=\frac{30}{10}=3 \mathrm{~A}$
Reading of voltmeter $=1 \times 3=3$ volt.

CHEMISTRY

31. (A)

If P° is the vapour pressure of pure benzene and P the vapour pressure of solution, w the weight of non-volatile substance of molecular mass ' m ' and W the weight of solvent benzene with molecular mass M,

$$
\begin{aligned}
& \frac{\mathrm{P}^{\circ}-\mathrm{P}}{\mathrm{P}^{\circ}}=\frac{\mathrm{w} / \mathrm{m}}{\mathrm{~W} / \mathrm{M}}=\frac{\mathrm{wM}}{\mathrm{Wm}} \text { substituting the values } \\
& \frac{10}{750}=\frac{2 \times 78}{78 \times \mathrm{m}} \quad \text { Or } \mathrm{m}=150
\end{aligned}
$$

32. (B)

Mole fraction of solute $X_{2}=0.2$. Therefore, mole fraction of solvent $X_{1}=0.8$
Or $\frac{n_{2}}{n_{1}+n_{2}}=0.2$ and $\frac{n_{1}}{n_{1}+n_{2}}=0.8$
$\therefore \quad \frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{0.2}{0.8}=\frac{1}{4}$
Now, if n_{1} (solvent moles) $=1000 / 78=12.8$ moles
$n_{2}=12.8 / 4=3.2$ moles. Therefore, 3.2 moles of the compound are present in one Kg of solvent benzene and so molality $=3.2$.
33. (C)

For equimolar solutions, mole fraction of benzene $=$ mole fraction of toluene
Or $x_{B}=x_{T}=0.5$
Now, vapour pressure of benzene $P_{B}=x_{B} \cdot P_{B}{ }^{\circ}=0.5 \times 160=80 \mathrm{~mm}$
And, vapour pressure of toluene $P_{T}=x_{T} \cdot P_{T}{ }^{\circ}=0.5 \times 80=40 \mathrm{~mm}$
And, total vapour pressure $=80+40=120 \mathrm{~mm}$
So, mole fraction of toluene in vapour phase $=\frac{30}{120}=\frac{1}{3}$
34. (C)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
Or $m=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{0.01}{0.5}=0.02$ mole Kg^{-1} of water
So, the number of moles of glucose in 100 g of water

$$
=\frac{0.02 \times 100}{1000}=0.002 \text { moles of glucose }=0.002 \times 6.023 \times 10^{23}=2 \times 6.023 \times 10^{20} \text { molecules }
$$

35. (C)

$$
\begin{array}{r}
2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \\
2 \mathrm{x}
\end{array}
$$

$\therefore 3 x=0.168$
$\therefore \quad \mathrm{x}=0.056 \mathrm{~L}$
$\mathrm{V}_{\mathrm{H}_{2}}=2 \mathrm{x}=0.112 \mathrm{~L}, \mathrm{~V}_{\mathrm{O}_{2}}=\mathrm{x}=0.056 \mathrm{~L}$
11.2 L of H_{2} at $\mathrm{STP} \equiv 1 \mathrm{~F}$
$0.112 \mathrm{~L}^{\text {of }} \mathrm{H}_{2}$ at $\mathrm{STP} \equiv 0.01 \mathrm{~F}$
0.056 L of O_{2} at $\mathrm{STP}=0.01 \mathrm{~F}$
\therefore The amount of electricity passed $=0.01 \mathrm{~F}=965 \mathrm{C}$
36. (D)
H^{+}ion has the maximum λ_{m}^{0} which is explainable by Grothus mechanics, Li^{+}having the maximum charge density, is the most hydrated ion among the lot and hence the lowest λ_{m}^{0}
37. (B)
$\mathrm{t}_{1 / 2}$ for nth order reaction $=\frac{2^{n-1}-1}{(n-1) k(a)^{n-1}}$ On substituting $\mathrm{n}=2$, we obtain $\mathrm{t}_{1 / 2}=\frac{2-1}{1 \cdot k \cdot a}=\frac{1}{k a}$.
Therefore, the order of the reaction is 2.
So, unit of $K=M^{-1} \mathrm{~s}^{-1}$
38. (C)
$\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$
or $\mathrm{t}=\frac{2.303}{6} \log \frac{6 \times 0.5}{0.3}=\frac{2.303}{6} \log 10=\frac{2.303}{6}=0.384 \mathrm{~min}$.
39. (B)

The required combustion equation is obtained as
$2 \times$ eqn. (3) $2 \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2} 2 \times(-297.0) \mathrm{KJ}$

+ eqn. (2) $+\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+(-393.0) \mathrm{KJ}$
-eqn. (1) $-\mathrm{C}-2 \mathrm{~S} \rightarrow-\mathrm{CS}_{2}-(+117.0) \mathrm{KJ}$
or we get $2 \mathrm{~S}+3 \mathrm{O}_{2}-2 \mathrm{~S} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{CO}_{2}-\mathrm{CS}_{2}$
or $\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}\left(-1104 \mathrm{KJ} \mathrm{mol}^{-1}\right)$
The answer is (B).

40. (B)

Isothermal expansion of an ideal gas does not change energy and, therefore, $\Delta \mathrm{U}=0$.
41. (B)

42. (C)

43. (A)

44. (A)

In most cases tautomerims involves interconversion of suitable constitutional isomers by the 1,3 -shift of hydrogen from an atom which is it self bonded to a functional group containing a multiple bond. Tautomers differ in the location of the double bond and hydrogen.

45. (A)

Both are indentical because both having same configuration on respective asymmetric centre
46. (B)

47. (C)

48. (A)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3} \quad$ (cumulenes with even no. of $\mathrm{C}=\mathrm{C}$ bond)
Molecule possessing axial chirality

49. (B)
50. (A)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
51. (C)
52. (C)
53. (B)

Slag formed during extraction of copper is FeSiO_{3}.
54. (B)

In the cyanide process involving extraction of silver, zinc is used industrially as reducing agent.
55. (B)

Strength of ligands α stability of complex.
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$is correct order of stability.
56. (D)

57. (C)

Large sized chlorine atom do not fit in between the small boron atom whereas small sized hydrogen
atom get fitted in between boron atom.
58. (B)
$\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{H}_{3} \mathrm{PO}_{3}<\mathrm{H}_{3} \mathrm{PO}_{2}$ Acidic Nature
59. (D)

It act as dehydrating agent \& absorption of water is highly exothermic.
60. (D)
$\xrightarrow[\text { Oxidizing Nature }]{\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}}$

MATHEMATICS

61. (C)

$$
\begin{array}{ll}
{[x]+[-x]=0} & x \in I \\
{[x]+[-x]=-1} & x \notin I
\end{array}
$$

62. (B)

$$
\begin{aligned}
& \int \frac{(x+1)^{2}-(x-1)^{2}}{(x+1)^{2}(x-1)^{2}} d x \Rightarrow \int \frac{d x}{(x-1)^{2}}-\int \frac{d x}{(x+1)^{2}} \\
& \Rightarrow-\frac{1}{x-1}+\frac{1}{x+1}+c \Rightarrow \frac{1}{x+1}-\frac{1}{x-1}=-\frac{2}{x^{2}-1}+c
\end{aligned}
$$

63. (C)

$$
\begin{aligned}
& \left|\int_{1 / 2}^{1}\left(x^{2}-x\right) d x\right|+\int_{1}^{4}\left(x^{2}-x\right) d x \\
& \left|\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{1 / 2}^{1}\right|+\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{1}^{4} \Rightarrow\left|\left(\frac{1}{3}-\frac{1}{2}\right)-\left(\frac{1}{24}-\frac{1}{8}\right)\right|+\left[\left(\frac{64}{3}-8\right)-\left(\frac{1}{3}-\frac{1}{2}\right)\right] \\
& \left|-\frac{1}{6}-\left(\frac{1-3}{24}\right)\right|+\left[\frac{40}{3}+\frac{1}{6}\right]=\frac{163}{12}
\end{aligned}
$$

64. (A)

$$
\begin{aligned}
& x d y-y d x=\sqrt{x^{2}-y^{2}} d x \\
& d\left(\frac{y}{x}\right)=\frac{\sqrt{1-\left(\frac{y}{x}\right)^{2}} d x}{x}
\end{aligned}
$$

$$
\int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1-\left(\frac{y}{x}\right)^{2}}}=\int \frac{d x}{x}
$$

65. (B)

$$
\begin{aligned}
& \frac{\sin \frac{4 x}{2} \cdot \cos \left\{x+(4-1) \frac{x}{2}\right\}}{\sin \frac{x}{2}}=-\frac{1}{2} \\
& 2 \sin 2 x \cdot \cos \frac{5 x}{2}=-\sin \frac{x}{2} \\
& \sin \frac{9 x}{2}+\sin \left(-\frac{x}{2}\right)=-\sin \frac{x}{2} \\
& \frac{9 x}{2}=n \pi \Rightarrow x=\frac{2 n \pi}{9}
\end{aligned}
$$

66. (B)
$y=4 x+\sqrt{16 a^{2}+b^{2}}$
$8^{2}=16 a^{2}+b^{2}$
$\frac{16 a^{2}+b^{2}}{2} \geq \sqrt{16 a^{2} b^{2}} \Rightarrow 32 \geq 4 a b \Rightarrow(a b) \max .=8$
67. (B)
$(x-2)^{2}+(y+3)^{2}=1^{2}$
$(x-5)^{2}+(y+7)^{2}=2^{2}$
\therefore minimum distance $=5-3=2$
68. (A)
$y=(\sin x-2)^{2}+1$
69. (B)
$6 x+8 y+10=0$
$6 x+8 y-7=0$

$$
\mathrm{D}=\frac{17}{10}
$$

70. (A)

$$
x=1,2, \quad|x-2|=1 \text { or } x=2 \pm 1=3,1
$$

71. (A)

$$
10 \times 2+\frac{1}{2} \times 2 \times 4+\frac{1}{2} \times 6 \times 12 \Rightarrow 20+4+36=60
$$

72. (A)

$$
\left|\int_{0}^{1} x \ln x d x\right|=\frac{1}{4}
$$

73. (B)

$$
\begin{aligned}
& x^{2} y^{2}-x^{2}-y^{2}+1=0 \\
& x= \pm 1, y= \pm 1
\end{aligned}
$$

74. (B)
75. (A)

$$
y=x^{\frac{1}{x}}
$$

$$
\ln y=\frac{1}{x} \ln x
$$

$$
\frac{1 d y}{y d x}=\frac{x \cdot \frac{1}{x}-\ln x}{x^{2}}=0 \Rightarrow x=e
$$

76. (B)

$$
f^{\prime}(c)=\frac{f(3)-f(1)}{2} \Rightarrow 6 c+5=17 \Rightarrow c=2
$$

77. (B)

78. (B)

$$
y-m x= \pm \sqrt{39 m^{2}-14}
$$

It passes through $(3,4)$ so, $30 m^{2}+24 m-30=0$
$\Rightarrow m_{1} m_{2}=-1$
79. (A)
80. (B)

S $=5+7+11+17+25 \ldots \ldots \ldots+T_{n}$
$S=5+7+11+17+\ldots \ldots .+T_{n-1}+T_{n}$
$\Rightarrow \mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}-\mathrm{n}+5 \quad \therefore \mathrm{~S}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{n}}=\frac{\mathrm{n}\left(\mathrm{n}^{2}+14\right)}{3}$
81. (B)
$z=x+i y$
$z^{2}=x^{2}-y^{2}+2 x y i$
$2 x y=10$
$x y=5$
82. (B)
$\frac{d y}{d x}=e^{x} \cdot e^{y}$
$\int \frac{d y}{e^{y}}=\int e^{x} d x \Rightarrow-e^{-y}=e^{x}+c$
83. (A)
$y=e^{k x}$
$k x=\ln y$
$k=\frac{\ln y}{x}$
$\frac{x \cdot \frac{1}{y} \frac{d y}{d x}-\ln y \cdot 1}{x^{2}}=0$
$\frac{x}{y}\left(-\frac{d x}{d y}\right)=\ln y$

On solving we get, $\frac{y^{2}}{2}-x^{2}=y^{2} \ln y+c$
84. (C)
85. (A)
86. (C)

Point of intersection $(0,0) \&(-1,-1)$
87. (C)
$\int_{0}^{5}[x] d x+\int_{5}^{5.6}[x] d x$
$0+1+2+3+4+5 \times 0.6=10+3=13$
88. (B)

Suppose $n(A)=n$, then number of reflexive relations on A is $=2^{n^{2}-n}$
and number of symmetric relations on A is $=2^{\frac{n^{2}+n}{2}} \Rightarrow n^{2}-3 n=0 \Rightarrow n=3$.
89. (B)

As $f(x)$ is an odd cubic polynomial function. So, it must be of the form $f(x)=a x^{3}+b x$
Now, $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x}+1\right)^{\frac{1}{x^{2}}}$ exists if $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0 \Rightarrow b=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{f(x)}{x}+1\right)^{\frac{1}{x^{2}}}=e^{2} \Rightarrow e^{a}=e^{2} \Rightarrow a=2 \Rightarrow f(x)=2 x^{3} \\
& h(x)=e^{x+1} \int_{1}^{x} e^{-t} f(t) d t \Rightarrow h^{\prime}(x)=e f(x)+e^{x+1} \int_{1}^{x} e^{-t} f(t) d t \quad \therefore h^{\prime}(1)=e f(1)=2 e
\end{aligned}
$$

90. (D)

$$
F(x)=\left|\begin{array}{ll}
f(x) & f\left(\frac{x}{3}\right) \\
g(x) & g\left(\frac{x}{2}\right)
\end{array}\right|=f(x) \cdot g(x / 2)-g(x) \cdot f(x / 3)
$$

Period of $f(x)$ is 3
\therefore Period of $f(x / 3)$ is 9
Period of $g(x)$ is 2
\therefore Period of $g(x / 2)$ is 4
\therefore Period of $F(x)$ is L.C.M. of period of $f(x) \cdot g(x / 2)-g(x) \cdot f(x / 3)=36$

