# SOLUTIONS 

# PHASE TEST-2 GRA <br> <br> JEE ADVANCED PATTERN <br> <br> JEE ADVANCED PATTERN <br> <br> Test Date: 24-09-2017 

 <br> <br> Test Date: 24-09-2017}


Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

## PHYSICS

1. (A)
$\mathrm{U}_{1}$ will be positive and greatest since all forces among dipoles are repulsive. $\mathrm{U}_{2}$ is negative as potential energy of first \& second dipole pair cancels out potential energy of second and third pair, leaving only potential energy of interaction of first and third, that is negative. In (c), effect of attraction is greatest.
2. $(A)$
figure shows forces acting on a 'particle' on the surface, with respect to vessel.

( $\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta$ is pseudo force).

$$
\tan \phi=\mu \quad \therefore \phi=\tan ^{-1} \mu .
$$

$\phi$ is angle between normal to the inclined surface and the resultant force. The same angle will be formed between the surface of water \& the inclined surface.
$\{\because$ free surface is $\perp$ to the resultant force acting on it.\}
3. (B)
$\therefore \quad \mathrm{C}_{\text {eq }}=3 / 2 \mu \mathrm{~F}$
Charge flow $\Delta q=C_{\text {eq }}\left(10-\frac{15}{3}\right)=\frac{3}{2} \times 5=7.5 \mu \mathrm{C}$.
4. (C)


During $1^{\text {st }}$ collision perpendicular component of $\mathrm{V}, \mathrm{V}_{\perp}$ becomes e times, while $\mathrm{Il}^{\text {nd }}$ component $V_{\| I}$ remains unchanged and similarly for second collision. The end result is that both $V_{\|}$and $V_{\perp}$ becomes e times their initial value and hence $\mathrm{V}^{\prime \prime}=-\mathrm{eV}$ (the $(-)$ sign indicates the reversal of direction).
5. (B)

Given system is equivalent to

$|E|=0$ at centre
$\therefore \frac{2 \mathrm{kp}}{\mathrm{R}^{3}}$.
6. (B)

When the rod falls through an angle $\alpha$ the C.G. falls through a height $h$.
In $\triangle \mathrm{OB}^{\prime} \mathrm{B}$,
$\cos \alpha=\frac{\left(\frac{L}{2}-h\right)}{L / 2}$
i.e. $h=\frac{1}{2}(1-\cos \alpha)$
K.E. rotation = Decrease in P.E.

i.e. $\frac{1}{2} \mathrm{l} \omega^{2}=\mathrm{mgh}$
i.e. $\frac{1}{2}\left(\frac{\mathrm{~mL}^{2}}{3}\right) \omega^{2}=m g \frac{\mathrm{~L}}{2}(1-\cos \alpha)$ or
$\omega=\sqrt{\frac{6 \mathrm{~g}}{\mathrm{~L}}} \sin \frac{\alpha}{2}$
7. $(A, D)$
(A) Charge on capacitor $B$ decreases as dielectric slab is taken out. Charge from positive plate of $B$ flows towards battery.
Charge on $A$ and $B$ can not be different, as being connected in series.
During the process, battery is being charged.
8. $(A, B)$
9. $(A, C, D)$
10. (A,B,C)

Maximum acceleration block $A=\frac{0.5 m g}{m}=\frac{g}{2}$

So, if $M=2 m, a_{A}=a_{B}=\frac{2 m g}{4 m}=\frac{g}{2}$ and friction force is $\frac{1}{2} m g$.
11. $(B, D)$

Let charge on smaller sphere be $x$ and on larger sphere be $4 q-x$
force between them is given by $F=\frac{k x(4 q-x)}{d^{2}}$
$\frac{d F}{d x}=0 \Rightarrow 4 q-2 x=0 \Rightarrow x=2 q$
$\frac{d^{2} F}{d x^{2}}=\frac{K}{d^{2}}(-2)<0$

$\therefore \quad$ it represents a maximum.
Final charges on the smaller sphere and the larger sphere are q \& 3q respectively as required by the equality of potentials
$\therefore$ force will increase until the charges become equal and after that force will decrease.
12. $(B, D)$

Now, potential difference across $C_{1}$ is 20 V and across $C_{2}$ is zero.

$\therefore$ charge stored in $C_{1}$ is $40 \mu \mathrm{C}$ and in $C_{2}$ is zero.
13. (B, D)
$R_{\text {eq }}=400 \Omega, \quad I=\frac{100}{400}=\frac{1}{4} \mathrm{~A}$

Potential difference across voltmeter $=\frac{1}{4} \times 200 \Omega=50 \mathrm{~V}$
14. $(A, B, C)$
15. (A)
16. (D)
17. (A)
18. (D)

## CHEMISTRY

19. (B)

Degree of dissociation
$\alpha=\frac{\left(\Lambda_{\mathrm{M}}^{\mathrm{c}}\right)}{\left(\Lambda_{\mathrm{M}}^{\circ}\right)}=\frac{3.9}{390}=0.01$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\mathrm{c} \alpha \cdot \mathrm{c} \alpha}{\mathrm{c}-\mathrm{c} \alpha}=\frac{\mathrm{c} \alpha^{2}}{1-\alpha} \approx \mathrm{c} \alpha^{2}=10^{-6}$
$p^{k a}=6$
20. (B)

21. (B)
22. (A)


23. (A)
24. (D)
$\mathrm{C} \equiv \mathrm{A} \mathrm{C}$
$\mathrm{C}=\mathrm{C}_{\mathrm{B}}-\mathrm{C} \equiv \mathrm{C}$
$\mathrm{C}=\mathrm{C}_{\mathrm{C}} \mathrm{C}=\mathrm{C}$
25. (A,D)
$P=\frac{A}{Z}$
When $\mathrm{P}>1$ experimentally determined value is higher than the predicted value by Arrhenius $P \ll 1$, use of catalyst is required.
$P>1$. no need to add catalyst. Activation energy can be experimetally calculated by eliminating steric factor.
26. (B,D)


In oxymercuration-demercuration the rearrangement of carbon skeleton doesnot involved.


In acid catalysed-hydration the rearrangement of carbon skeleton involve.
27. (A, B, C, D)

RLVP $=\frac{20}{760}=\frac{1}{38}$ Ans. (D)
Also, $\frac{P^{0}-P_{s}}{P_{s}}=\frac{n}{N} \Rightarrow \frac{20}{740}=\frac{1}{N} \Rightarrow N=37 \mathrm{~mol}$
$\therefore$ No. of moles of ice separated $=(200-37)=163$ moles Ans. (A)
For original solution : $\Delta \mathrm{T}_{\mathrm{f}}=2 \times \frac{1 \times 1000}{200 \times 18}=\left(\frac{10}{18}\right) \mathrm{K}=\left(\frac{10}{18}\right){ }^{\circ} \mathrm{C}$
$\therefore$ Freezing point $=0^{\circ} \mathrm{C}-\left(\frac{10}{18}\right){ }^{\circ} \mathrm{C}=-\left(\frac{10}{18}\right)^{\circ} \mathrm{C}$ Ans. (C)
28. (B), (C)
29. (A), (C)
30. (A), (C)
31. (A, C)


Chiral i.e. why it show optical isomerism
(C)


Chiral i.e. why it show optical isomerism.
32. (B), (D)

(D)

33. (D)

In the given solution ' M ', $\mathrm{H}_{2} \mathrm{O}$ is solute.
Therefore, molality of $\mathrm{H}_{2} \mathrm{O}=\frac{0.1}{0.9 \times 46} \times 1000=2.4$
$\Rightarrow \Delta \mathrm{T}_{f}=\mathrm{k}_{f}^{\text {ethanol }} \times 2.4=2 \times 2.4=4.8$
$\Rightarrow \mathrm{T}_{f}=155.7-4.8=150.9 \mathrm{~K}$
34. (B)

Now ethanol is solute.
Molality of solute $=\frac{0.1}{0.9 \times 18} \times 1000=6.17$
$\Rightarrow \quad \Delta \mathrm{T}_{\mathrm{b}}=6.17 \times 0.52=3.20$
$\Rightarrow \mathrm{T}_{\mathrm{b}}=373+3.2=376.2 \mathrm{~K}$
35. (B)
36. (C)

Stability of $\mathrm{C}^{+}$.

## MATHEMATICS

37. (A)

$$
\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}=\left[\frac{27}{2}-9\right]=\frac{9}{2}
$$

38. (A)

Family of parabolas is $y^{2}=\alpha(x-\beta)$

$$
\begin{aligned}
& \Rightarrow 2 y^{\prime}=\alpha \Rightarrow\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=0 \\
& \text { order } \rightarrow 2 \text {, degree } \rightarrow 1
\end{aligned}
$$

39. (D)

Let $g(x)=f^{-1}(x) ; f\left(\frac{\pi}{2}\right)=\pi \Rightarrow f^{-1}(\pi)=\frac{\pi}{2}$

$$
f^{\prime}(x)=6(2 x-\pi)^{2}+2+\sin x \Rightarrow f^{\prime}\left(\frac{\pi}{2}\right)=3
$$

Also $\mathrm{g}(\pi)=\frac{\pi}{2}$
Now $f(g(x))=x \Rightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=1$

$$
\Rightarrow f^{\prime}(g(\pi)) \cdot g^{\prime}(\pi)=1 \Rightarrow f^{\prime}\left(\frac{\pi}{2}\right) \cdot g^{\prime}(\pi)=1 \Rightarrow 3 g^{\prime}(\pi)=1 \Rightarrow g^{\prime}(\pi)=\frac{1}{3}
$$

40 (D)

$$
I=\int \frac{x^{2}+2}{x^{4}-x^{2}+4}=\int \frac{1+\frac{2}{x^{2}}}{x^{2}+\frac{4}{x^{2}}-1} d x
$$

say $x-\frac{2}{x}=t \Rightarrow\left(1+\frac{2}{x^{2}}\right) d x=d t$

$$
\Rightarrow \mathrm{I}=\int \frac{\mathrm{dt}}{\mathrm{t}^{2}+3}=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\mathrm{t}}{\sqrt{3}}\right)+\mathrm{c}=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\mathrm{x}^{2}-2}{\sqrt{3} \mathrm{x}}\right)+\mathrm{c}
$$

41. (C)

The given expression can be written as $4 \sin 3 x(\cos 3 x-\sin 3 x)+5$
$=2 \sin 6 x+5-4 \sin ^{2} 3 x=2(\sin 6 x+\cos 6 x)+4$
Hence minimum value $=3-2 \sqrt{2}$
42. (C)

We have $\operatorname{Lim}_{n \rightarrow \infty} \frac{3 n \cdot 4^{2 n}}{3 n(x-3)^{2 n}+3 n \cdot 4^{2 n+1}-4^{2 n}}=\frac{1}{4}$;
So $\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{\left(\frac{x-3}{4}\right)^{2 n}+4-\frac{1}{3 n}}=\frac{1}{4}$
Clearly $-1<\frac{x-3}{4}<1 \quad \Rightarrow-1<x<7$
$\therefore$ Possible integers in the range ' $x$ ' are $0,1,2,3,4,5,6 \Rightarrow 7$ integers
43. $(A, B)$

Normal is $y=m x-2 a m-a m^{3}$ passes through (5a, 2a)
$\Rightarrow \mathrm{am}^{3}-3 \mathrm{am}+2 \mathrm{a}=0 \Rightarrow \mathrm{~m}^{3}-3 \mathrm{~m}+2=0,(\mathrm{~m}-1)\left(\mathrm{m}^{2}+\mathrm{m}-2\right)=0$
$\Rightarrow \mathrm{m}=1,-2 \Rightarrow$ normals are $\mathrm{y}=\mathrm{x}-3 \mathrm{a}$ and $\mathrm{y}=-2 \mathrm{x}+12 \mathrm{a}$
44. (A, B, C, D)
45. (A,B,D)

We have $f(x)=\cos ^{-1}(-\{-x\})$
$D_{f}=R$
As $0 \leq\{-x\}<1 \forall x \in R$
$\Rightarrow-1<-\{-x\} \leq 0$
So $\mathrm{R}_{\mathrm{f}}=\left[\frac{\pi}{2}, \pi\right)$
Clearly, $f$ is neither even nor odd.
Butf $(x+1)=f(x) \Rightarrow f$ is periodic with period 1 .
46. (B, C)

From given
$\sum_{i=1}^{2 p} \sin ^{-1} x_{i}=-(2 p) \frac{\pi}{2} \quad p \in N \Rightarrow \sin ^{-1} x_{i}=-\frac{\pi}{2} \quad \forall i \Rightarrow x_{i}=-1 \forall i$
So, (B) and (C) are true
47. $(B, D)$

For (A) Put $\sqrt{3} x=y$, we get $\int_{0}^{\infty} e^{-3 x^{2}} d x=\frac{\sqrt{\pi}}{2 \sqrt{3}}$
For (B) $\int_{0}^{\infty} x e^{-x^{2}} d x=\left|-\frac{1}{2} e^{-x^{2}}\right|_{0}^{\infty}=\frac{1}{2}$
But $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\left|x\left(-\frac{1}{2} e^{-x^{2}}\right)\right|_{0}^{\infty}+\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{4}$
48. (B, C)
$4 a^{2}+b^{2}=4 c^{2}+4 a b \Rightarrow 4 a^{2}+b^{2}-4 a b=4 c^{2} \Rightarrow(2 a-b)^{2}=4 c^{2}$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}-2 \mathrm{c}=0,2 \mathrm{a}-\mathrm{b}+2 \mathrm{c}=0$
Take $2 a-b-2 c=0$ the $2 a x+b y+2 c=0$
$\Rightarrow 2 a x+b y+(2 a-b)=0$

$$
2 a(x+1)+b(y-1)=0
$$

$\Rightarrow \mathrm{y}-1=\lambda(\mathrm{x}+1)$
Hence differential equation of the family is $y-1=y^{\prime}(x+1)$
$\Rightarrow$ orthogonal trajectory is $(x+1)^{2}+(y-1)^{2}=\alpha$
Also for $2 a-b+2 c=0$ orthogonal trajectory $(x-1)^{2}+(y+1)^{2}=\beta$, where $\alpha$ and $\beta$ are parameters.
49. (B, C)
50. (B, C)

The required area is equivalent to the area bounded by $f(x)$ with $x$-axis from $x=0$ to $x=2 \pi$.


Thus Required Area $=\int_{0}^{2 \pi} f(x) d x=\int_{0}^{2 \pi}(\sin x+x) d x=\left[-\cos x+\frac{x^{2}}{2}\right]_{0}^{2 \pi}=2 \pi^{2}$ sq.units
51. (B)
52. (C)

$$
\begin{aligned}
& I_{n}=\int_{0}^{\pi / 4} \tan ^{n-2} x\left(\sec ^{2} x-1\right) d x=\int_{0}^{1} t^{n-2} d x-I_{n-2} \\
& \Rightarrow I_{n}+I_{n-2}=\frac{1}{n-1} \Rightarrow I_{n+1}+I_{n-1}=\frac{1}{n} \\
& \because I_{n}<I_{n-2} \Rightarrow 2 I_{n}<I_{n}+I_{n-2}=\frac{1}{n-1}
\end{aligned}
$$

$$
\text { Also, } \mathrm{I}_{\mathrm{n}}>\mathrm{I}_{\mathrm{n}+2} \Rightarrow 2 \mathrm{I}_{\mathrm{n}}>\mathrm{I}_{\mathrm{n}}+\mathrm{I}_{\mathrm{n}+2}=\frac{1}{\mathrm{n}+1}
$$

$$
\text { Hence } \frac{1}{n+1}<2 I_{n}<\frac{1}{n-1}
$$

53. (C)
54. (B)

$$
\begin{aligned}
& y=v x \Rightarrow v+x \frac{d v}{d x}=v+\tan v \\
& \Rightarrow \cot v d v=\frac{d x}{x} \Rightarrow \ell n(\sin v)=\ell n(x)+\ell n(k) \\
& \Rightarrow \sin v=k x \Rightarrow y=x \sin ^{-1}(k x)
\end{aligned}
$$

putting $x=1, y=\pi / 2$ we have $k=1$
$\Rightarrow$ Solution is $y=x \sin ^{-1} x$

