SOLUTIONS

PROGRESS TEST-1

 RBPAJEE MAIN PATTERN

Test Date: 03-09-2017

Corporate Office: Paruslok, Boring Road Crossing, Patna-01
Kankarbagh Office: A-10, 1st Floor, Patrakar Nagar, Patna-20
Bazar Samiti Office : Rainbow Tower, Sai Complex, Rampur Rd.,
Bazar Samiti Patna-06
Call : 9569668800 | 7544015993/4/6/7

PHYSICS

1. $u=7 \mathrm{~m} / \mathrm{s}$ and $a=4 \mathrm{~m} / \mathrm{s}^{2}$

Distance traveled in $n^{\text {th }}$ second $=u+\frac{a}{2}(2 n-1)$
\therefore Distance traveled in $5^{\text {th }}$ second $=7+\frac{4}{2}[2(5)-1]=25 \mathrm{~m}$
$\therefore \quad(\mathrm{A})$
2. Let after t second particle will reach at P again,
$\therefore \quad$ area of $v-t$ curve $=0$
$\frac{1}{2} \times 2 \times 8-\frac{1}{2} \times(\mathrm{t}-8) \times(\mathrm{t}-8) \times 1=0$
$(t-8)^{2}=16$
$\mathrm{t}-8=4$
$\mathrm{t}=12 \mathrm{~s}$
$\therefore \quad(\mathrm{C})$
3. The stopping distance $S \propto u^{2}$
\therefore (D)
4. $x^{2}+y^{2}=I^{2} \Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \Rightarrow-x v_{A}+y v_{B}=0$
$\therefore \quad \mathrm{v}_{\mathrm{B}}=\frac{\mathrm{v}_{\mathrm{A}}}{\tan \alpha}=10 \sqrt{3}=17.3 \mathrm{~m} / \mathrm{s}$
\therefore (D)
5. $\quad \frac{v_{T}+v_{B}}{2}=\frac{3}{0.5}=6$ or $v_{T}+v_{B}=12 \mathrm{~ms}^{-1}$
$\therefore \quad(\mathrm{A})$
6. Block B again comes to rest when speed of $A=$ speed of C

$$
v_{A}=6 t^{2}, v_{c}=3 t, 6 t^{2}=3 t, t=\frac{1}{2} s
$$

\therefore (D)
7. $\frac{\mathrm{ds}}{\mathrm{dt}}=4 \sqrt{1+\mathrm{s}}$
$\Rightarrow \int_{0}^{\mathrm{s}} \frac{\mathrm{ds}}{\sqrt{1+\mathrm{s}}}=\int_{0}^{\mathrm{t}} 4 \mathrm{dt} \Rightarrow 2 \sqrt{1+\mathrm{s}}=4 \mathrm{t} \Rightarrow \mathrm{s}=4 \mathrm{t}^{2}-1$
$\Rightarrow \quad v=8 t$ at $t=0, v=0$
\therefore (A)
8. For first projectile, $h_{1}=u t-\frac{1}{2} g t^{2}$

For second projectile, $\mathrm{h}_{2}=\mathrm{u}(\mathrm{t}-\mathrm{T})-\frac{1}{2} \mathrm{~g}(\mathrm{t}-\mathrm{T})^{2}$
When both meet i.e. $h_{1}=h_{2}$

$$
\text { ut }-\frac{1}{2} g t^{2}=u(t-T)-\frac{1}{2} g(t-T)^{2} \quad \Rightarrow \quad u T+\frac{1}{2} g T^{2}=g t T \Rightarrow t=\frac{u}{g}+\frac{T}{2}
$$

$\therefore \quad(B)$
9. $\quad a=v \frac{d v}{d x}=\frac{25}{(x+2)^{3}}, \quad \frac{v^{2}}{2}=25 \times\left[-\frac{1}{2(x+2)^{2}}\right]_{0}^{x}, v^{2}=25\left[\frac{1}{4}-\frac{1}{(x+2)^{2}}\right]$
$v=\sqrt{25\left[\frac{1}{4}-\frac{1}{(x+2)^{2}}\right]}, v_{\text {max }}=\frac{5}{2}=2.5 \mathrm{~m} / \mathrm{s} \quad($ at $x=\infty)$
$\therefore \quad(A)$
10. The graph will be parabolic and in downward motion velocity will be negative and upward motion velocity will be positive
\therefore (A)
11. For train B,

$$
-\frac{d v}{d t}=0.3 t
$$

$$
-\int_{15}^{0} \mathrm{dv}=0.3 \int_{0}^{\mathrm{t}} \mathrm{tdt} \Rightarrow \quad t=10 \mathrm{~s}
$$

In this 10 s , the train B travels a distance of 100 m .
\therefore Train A can travel a distance of 125 m before coming to rest.

$$
\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}, \mathrm{a}=-2.5 \mathrm{~m} / \mathrm{s}^{2}
$$

\therefore (B)
12. For safe crossing, the condition is that the man must cross the road by the time the truck covers the distance $4+A C$ or $4+2 \cot \theta$

$\therefore \quad \frac{4+2 \cot \theta}{8}=\frac{2 / \sin \theta}{\mathrm{v}}$
or $\quad v=\frac{8}{2 \sin \theta+\cos \theta}$
For minimum $v, \frac{d v}{d \theta}=0 \Rightarrow \tan \theta=2$
From equation (i), $\quad \mathrm{v}_{\text {min }}=\frac{8}{\sqrt{5}}=3.57 \mathrm{~m} / \mathrm{s}$
$\therefore \quad(C)$
13. $A_{1}=\frac{1}{2}(2+4) \times 1=3 \mathrm{~m}$
$A_{2}=\frac{1}{2}(2+1) \times 4=6 m$
$A_{3}=\frac{1}{2}(2 \times 4)=4 m$

$A_{4}=\frac{1}{2}(2 \times 6)=6 m$
Distance travelled in $7 \mathrm{~s}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}=19 \mathrm{~m}$
Average speed $=\frac{19}{7} \mathrm{~m} / \mathrm{s}$
\therefore (D)
14. $0-t_{1} \rightarrow$ uniformly retarded motion
$\mathrm{t}_{1}-\mathrm{t}_{2} \rightarrow$ particle at rest
$\mathrm{t}_{2}-\mathrm{t}_{3} \rightarrow$ uniform negative velocity
$\mathrm{t}_{3}-\mathrm{t}_{4} \rightarrow$ particle at rest
$t_{4}-t_{5} \rightarrow$ uniform negative velocity
$\therefore \quad(C)$
15. (C)

Fringe visibility gives the contrast of the fringes given by
$V=\frac{2 \sqrt{I_{1} / I_{2}}}{1+\mathrm{I}_{1} / \mathrm{I}_{2}}$
16. (C)
17. (C)

After immersing, no change in central maxima in air, separation between central maxima \& $10^{\text {th }}$ maxima $=5 \mathrm{~cm}-2 \mathrm{~cm}=3 \mathrm{~cm}=10 \frac{\mathrm{D} \lambda}{\mathrm{d}}$ in liquid, separation between central maxima \& $10^{\text {th }}$ maxima $=$
$10 \frac{\mathrm{D} \lambda^{\prime}}{\mathrm{d}}=10 \frac{\mathrm{D}}{\mathrm{d}} \frac{\lambda}{\mu}=\left(\frac{10 \mathrm{D} \lambda}{\mathrm{d}}\right) / 1.5=\frac{3 \mathrm{~cm}}{1.5}=2 \mathrm{~cm}$. So new co-ordinate of $10^{\text {th }}$ maxima $=2 \mathrm{~cm}+2 \mathrm{~cm}=4 \mathrm{~cm}$
18. (A)

Phase difference correspnding to $y_{1}=\frac{-\pi}{2}$ and that for $y_{2}=+\frac{\pi}{2}$
\therefore Average intensity between y_{1} and y_{2}

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \mathrm{I}_{\max } \cos ^{2}\left(\frac{\phi}{2}\right) \mathrm{d} \phi \\
& =\mathrm{I}_{\max } \frac{(\pi+2)}{2 \pi}
\end{aligned}
$$

Hence required ratio $=\frac{1}{2}\left(1+\frac{2}{\pi}\right)$
19. (C)

$2 \mu t \cos r=(2 n+1) \frac{\lambda}{2}$
$\mathrm{t}=\frac{(2 \mathrm{n}+1) \lambda}{4 \mu \cos \mathrm{r}}($ putting $\mathrm{n}=0)=\frac{\lambda}{4 \mu \cos r}$
$\cos r=\sqrt{1-\sin ^{2} r}=\frac{1}{\mu} \sqrt{\mu^{2}-\sin ^{2} \beta}$
Substituting all value $t=1.01 \times 10^{-7} \mathrm{~m}$
mass of soap $=\rho \times \ell \times h \times t=6.06 \times 10^{-2} \mathrm{mg}$.
20. (A)

$$
\begin{aligned}
& \Delta x=A S_{1}+S_{1} P-S_{2} P \\
& =d \sin \theta-\frac{d x}{D}=0 \\
& \Delta x=\frac{d \times d}{2 f}-\frac{d x}{D}=0 \quad d \lll D \\
& x=\frac{d D}{2 f}
\end{aligned}
$$

21. (B)

Condition for constructive interference
$2 \mu \mathrm{t} \cos \mathrm{r}=\mathrm{n} \lambda$
$\sin 30^{\circ}=1.34 \sin r$
$\sin r=\frac{1}{2.68}$ or $\frac{1}{3}$
$\cos r=\sqrt{1-\sin ^{2} r}$

$$
\begin{equation*}
2 \mu t \cos r=n \lambda \tag{1}
\end{equation*}
$$

$2 \mu(t-\Delta t) \cos r=(n-1) \lambda \quad . .(2)$
Equation (1) and equation (2)
By eq.(1) and eq.(2)
$2 \mu \Delta t \cos r=\lambda$
$\Delta t=\frac{\lambda}{2 \mu \cos r}$
Rate of decrease $=\frac{\Delta \mathrm{t}}{\text { time }}=1.01 \mu \mathrm{~m} / \mathrm{hr}$
$\left[\right.$ Time $=15 \mathrm{~min}=\frac{15}{60}$
22. (C)
23. (D)

24. (A)
25. (C)
$\mu=\tan \mathrm{i}_{\mathrm{p}}$
$\therefore \frac{\mathrm{c}}{\mathrm{v}}=\tan \mathrm{i}_{\mathrm{p}}$
$\therefore \mathrm{v}=\frac{3 \times 10^{8}}{\sqrt{3}}=\sqrt{3} \times 10^{8} \mathrm{~m} / \mathrm{s}$
26. For charge $+q$ at A to come down, $\mathrm{F}_{\mathrm{e}}<\mathrm{mg}$
$\therefore \quad \frac{q^{2}}{4 \pi \varepsilon_{0} h^{2}}<\mathrm{mg}$
$\therefore \quad(C)$
27. $F=\frac{Q^{2}}{4 \pi \varepsilon_{0} r^{2}}$
$F_{C}=\frac{Q^{2} / 2}{4 \pi \varepsilon_{0}\left(\frac{r}{2}\right)^{2}}-\frac{Q^{2} / 4}{4 \pi \varepsilon_{0}\left(\frac{r}{2}\right)^{2}}=\frac{Q^{2}}{4 \pi \varepsilon_{0} r^{2}}=F$

$\therefore \quad(C)$
28. (A)
29. $\frac{K(4 e) q}{(x-y)^{2}}=\frac{K q e}{y^{2}}, \quad y=\frac{x}{3}$
$\therefore \quad(\mathrm{C})$
30. $-\frac{2 q}{4 \pi \varepsilon_{0}(x-L)^{2}}+\frac{8 q}{4 \pi \varepsilon_{0} x^{2}}=0 \quad$ or $x=2 L$
\therefore (A)

CHEMISTRY

31. (D)
$\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
A ml
$\mathrm{A}\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{ml} \quad 0 \quad 0$
0
0
Ax $\frac{A y}{2}$
$A+A x+\frac{A y}{4}=600$
$A x+\frac{A y}{2}=700$
$\Rightarrow \frac{x}{y}=\frac{3}{8}$
Since, $x<5$
$\Rightarrow \mathrm{x}=3, \mathrm{y}=8$
$\Rightarrow A=100 \mathrm{ml}$
So, the hydrocarbon is $\mathrm{C}_{3} \mathrm{H}_{8}$ and the volume taken was 100 ml
32. (C)
$\left(P+\frac{a}{V^{2}}\right)(V)=R T$
$P V^{2}-R T V+a=0$
$V=\frac{+R T \pm \sqrt{(R T)^{2}-4 a P}}{2 P}$
V is single valued, $(R T)^{2}-4 a P=0 ; P=\frac{R^{2} T^{2}}{4 a}$
33. (B)

Permanent gas have extremely law criticl temperature \& hence to liquify them, temp must be extremely law below critical temp.
34. (C)

Liquefaction of the gas depends upon pressure correction. More is the pressure correction more easily the gas can be liquefied.
35. (D)
36. (A)

High temp. has less deviation fram ideal behaviour
37. (C)

At critical dondition, inflection point exist \& hence $\frac{\partial P}{\partial V_{m}} \& \frac{\partial^{2} P}{\partial V_{m^{2}}}=0$
38. (B)

A gas having higher value of 'a' can be easily liquefied due to strong intermolecular force of extraction.
39. (A)

Below critical temp. H_{2} gas can be liquified
40. (A)

Vander Waal's equation for one mole of gas is given by

$$
\left(\frac{\mathrm{P}+\mathrm{a}}{\mathrm{~V}^{2}}\right)[\mathrm{V}-\mathrm{b}]=\mathrm{RT}
$$

at low P , volume V is high

$$
\mathrm{V}-\mathrm{b} b
$$

$$
\begin{aligned}
& \therefore\left[\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right] \mathrm{V}=\mathrm{RT} \\
& \mathrm{PV}=\mathrm{RT}-\frac{\mathrm{a}}{\mathrm{~V}} ; \quad \mathrm{Z}=1-\frac{\mathrm{a}}{\mathrm{RTV}}
\end{aligned}
$$

41. (B)
42. (B)
43. (A)
44. (A)
45. (D)
46. (B)
47. (C)
48. (D)
49. (B)
50. (B)
51. (C)
52. (B)
53. (C)

54. (A)
(IV) $\mathrm{LiClO}_{4}>\mathrm{NaClO}_{4}>\mathrm{KClO}_{4}>\mathrm{RbClO}_{4}>\mathrm{CsClO}_{4}$
55. (A)
(iii) $\mathrm{C}_{12} \mathrm{O}_{9}-\mathrm{sp}^{2}$;

(iv) $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}-\mathrm{sp}^{2} \& \mathrm{sp}^{3}$;

56. (A)
(i) LiF $>\mathrm{NaF}>\mathrm{KF}>\mathrm{RbF}$: Lattice energy
(iii) $\mathrm{Li}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$:Hydration energy
57. (A)
58. (C)

Due to size of Nitrogen is smaller than another.
59. (D) $1 \& 3$ have $x-x$ bond absent.
(1) $\mathrm{B}_{2} \mathrm{H}_{6}$

(2) $\mathrm{C}_{2} \mathrm{H}_{6}$

(3) $\mathrm{Al}_{2} \mathrm{H}_{6}$

(4)

60. (C)

MATHEMATICS

61. (C)
$\left(\sin ^{-1} x+\sin ^{-1} y\right)\left(\sin ^{-1} z+\sin ^{-1} w\right)=\pi^{2}$ is possible only when $x=y=z=w=1$
or $x=y=z=w=-1$, then

$$
\left|\begin{array}{ll}
x^{n_{1}} & y^{n_{2}} \\
z^{n_{3}} & w^{n_{2}}
\end{array}\right|=0,2 \text { or }-2
$$

62. (C)

$$
\begin{aligned}
& \sin ^{-1}(\sin x)=x \text { in }\left(0, \frac{\pi}{2}\right]=\pi-x \text { in }\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]=x-2 \pi \text { in }\left[\frac{3 \pi}{2}, 2 \pi\right] \\
& =x-2 \pi \text { in }\left[\frac{3 \pi}{2}, 2 \pi\right] \\
& \cos ^{-1}(\cos x)=x \text { in }[0, \pi]=2 \pi-x \text { in }[\pi, 2 \pi] \\
& \begin{aligned}
& \therefore f(x)= 2 x \text { in }\left[0, \frac{\pi}{2}\right] \\
& \quad= \pi \text { in }\left[\frac{\pi}{2}, \pi\right] \\
& \quad=3 \pi-2 x \text { in }\left(\pi, \frac{3 \pi}{2}\right) \\
& \quad=0 \text { in }\left[\frac{3 \pi}{2}, 2 \pi\right]
\end{aligned}
\end{aligned}
$$

$\therefore(15) f(x)$ in increases in $\left(0, \frac{\pi}{2}\right)$
63. (D)

$$
\begin{aligned}
& \frac{1+x^{2}}{x} \geq 2 \quad(\because x>0) \\
& \quad \sin ^{-1}\left(\frac{x}{1+x^{2}}\right) \in\left(0, \frac{\pi}{6}\right] \\
& \therefore \quad \sin ^{-1}\left(\frac{2 y}{1+y^{2}}\right) \in\left(0, \frac{\pi}{2}\right]
\end{aligned}
$$

Range $=\left(0, \frac{2 \pi}{3}\right]$
64. (D)

$$
\begin{aligned}
& \sin ^{-1}\left(x^{2}-2 x+2\right)+\cos ^{-1}\left(4 x^{2}-4 x+2\right)=\frac{\pi}{2} \\
& \Rightarrow x^{2}-2 x+2=4 x^{2}-4 x+2 \\
& \Rightarrow 3 x^{2}-2 x=0 \Rightarrow x=0, \frac{2}{3}
\end{aligned}
$$

But for $x=0$ and $\frac{2}{3}$
$x^{2}-2 x+2>1$ and $4 x^{2}-4 x+2>1$
Hence No solution
65. (D)
$x=\sin 2 \theta=2 \sin \theta \cos \theta=\frac{4}{5}$
$\left(\theta=\tan ^{-1} 2\right)$
$y=\sin \frac{\phi}{2} ; y>0, \tan \phi=\frac{4}{3}$
$\mathrm{y}^{2}=\sin ^{2} \frac{\phi}{2}=\frac{1-\cos \phi}{2}=\frac{1}{5}$
66. (C)
$\sin ^{-1}(x-1) \Rightarrow-1 \leq x-1 \leq 1 \Rightarrow 0 \leq x \leq 2$
$\cos ^{-1}(x-3) \Rightarrow-1 \leq x-3 \leq 1 \Rightarrow 2 \leq x \leq 4$
$\tan ^{-1}\left(\frac{x}{2-x^{2}}\right) \Rightarrow x \in R, x \neq \sqrt{2},-\sqrt{2}$
hence $x=2$.

$$
\begin{aligned}
& \sin ^{-1}(2-1)+\cos ^{-1}(2-3)+\tan ^{-1} \frac{2}{2-4}=\cos ^{-1} \mathrm{k}+\pi \\
& \Rightarrow \sin ^{-1} 1+\cos ^{-1}(-1)+\tan ^{-1}(-1)=\cos ^{-1} \mathrm{k}+\pi \\
& \quad \frac{\pi}{2}+\pi-\frac{\pi}{4}=\cos ^{-1} \mathrm{k}+\pi \\
& \Rightarrow \cos ^{-1} \mathrm{k}=\frac{\pi}{4} \\
& \Rightarrow \mathrm{k}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

67. (B)

Given equation reduces to $(x-2)^{4}+\left(\tan ^{-1}(y-1)-\frac{\pi}{4}\right)^{2}=0$
$\Rightarrow x=2, y=2 \Rightarrow x+y=4$.
68. (D)
$\cos ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{1-x}=\cos ^{-1} \sqrt{x}+\sin ^{-1} \sqrt{x}=\frac{\pi}{2}$
So given equation, $\frac{\pi}{2}+\cos ^{-1} \sqrt{1-y}=\frac{3 \pi}{4} \Rightarrow \cos ^{-1} \sqrt{1-y}=\frac{\pi}{4} \Rightarrow y=\frac{1}{2}$.
Clearly $x \in[0,1]$ (for domain)
69. (B)
$\cos ^{-1}\left(\frac{1+x^{2}}{2 x}\right)=\frac{\pi}{2}+\left(\sin ^{-1} x+\cos ^{-1} x\right)$
$\cos ^{-1}\left(\frac{1+x^{2}}{2 x}\right)=\pi$, hence $x=-1$ is the only solution
70. (A)

The range of $\cos ^{-1} x+\cot ^{-1} x-\sin ^{-1}(\sin x)$ is $\left[\frac{\pi}{4}-1, \frac{7 \pi}{4}+1\right]$
Then $\frac{\pi}{4}-1 \leq 2 p-1 \leq \frac{7 \pi}{4}+1 \Rightarrow \frac{\pi}{8} \leq p \leq \frac{7 \pi}{8}+1$
Hence $p=1,2,3$, four values.
71. (A)

$$
\frac{a}{2} \in[0,3]
$$

$a=0,1,2,3,4,5,6$
Hence, 7 Pairs.
72. (B)

$$
\begin{aligned}
& \cot \left\{\cot ^{-1} 3+\cot ^{-1} 7+\cot ^{-1} 13+\cot ^{-1} 21\right\} \\
& =\cot \left\{\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}+\tan ^{-1} \frac{1}{21}\right\} \\
& =\cot \left\{\tan ^{-1} 2-\tan ^{-1} 1+\tan ^{-1} 3-\tan ^{-1} 2+\ldots+\tan ^{-1} 5-\tan ^{-1} 4\right\} \\
& =\cot \left[\tan ^{-1} 5-\tan ^{-1} 1\right]=\frac{3}{2}
\end{aligned}
$$

73. (D)
$\cos ^{-1} x \in[0, \pi]$
Thus $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z \leq 3 \pi$
$\Rightarrow \cos ^{-1} x=\cos ^{-1} y=\cos ^{-1} z=\pi \Rightarrow x=y=z=-1$
$\Rightarrow \frac{100 \mathrm{x}^{2}+182 \mathrm{y}^{2}}{47 \mathrm{z}^{2}}=\frac{100+182}{47}=6$
74. (B)

$$
\begin{aligned}
& \tan ^{-1} x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
& \Rightarrow \cos \left(\tan ^{-1} x\right) \in(0,1] \Rightarrow \cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right) \in\left[0, \frac{\pi}{2}\right) \\
& \Rightarrow \sin \left(\cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)\right) \in[0,1)
\end{aligned}
$$

75. (D)
$x=2 \pi-4 ; y=\pi-3 \Rightarrow x+y=3 \pi-7$
76. (C)

The points on the circle with integer co-ordinates are $(\pm 5,0),(\pm 4, \pm 3),(\pm 3, \pm 4),(0, \pm 5)$, which are 12 in number. Joining any two of them will form a chord with extremities having integral co-ordinates.

The number of the chords $={ }^{12} \mathrm{C}_{2}=66$.
77. (C)

Circles C_{1} and C_{2} touch each other externally, so they have three common tangents.

Circles C_{2} and C_{3} cut each other at two points, so they have two common tangents.

Circles C_{1} and C_{3} are external to each other, so they have four common tangents.
No common tangent can be drawn to touch all the three circles.
So, total no. of common tangents $=3+2+4=9$.
78. (A)

Let equation to the circle be $(x-r)^{2}+(y-r)^{2}=r^{2}$
If it passes through (a, b), then $a^{2}+b^{2}-2 r a-2 r b+r^{2}=0 \Rightarrow r^{2}-2 r(a+b)+a^{2}+b^{2}=0$
$\therefore \quad r_{1}+r_{2}=2(a+b) \& r_{1} r_{2}=a^{2}+b^{2}$
According to the given condition

$$
r_{1}^{2}+r_{2}^{2}=4 r_{1} r_{2} \Rightarrow a^{2}+b^{2}=4 a b
$$

79. (A)
$\because P$ PQOR is a cyclic quadrilateral with OP as diameter
Mid point of OP will be circumcentre of $\triangle P Q R$
$\Rightarrow \quad \mathrm{h}=\frac{\mathrm{t}}{2}, \mathrm{k}=3-\mathrm{t}$
\Rightarrow Locus is $y=3-2 x$
80. (C)

Given $\mathrm{QT}=\mathrm{QA}=1$

Let $\mathrm{PQ}=\mathrm{x}$, then $\mathrm{PT}=\sqrt{\mathrm{x}^{2}-1}$,
$\because \quad \triangle T Q P \sim \triangle A O P \quad \therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{QT}}{\mathrm{TP}}$
$\Rightarrow \mathrm{OA}=\mathrm{OT}=\frac{\mathrm{x}+1}{\sqrt{\mathrm{x}^{2}-1}}$
perimeter of $\triangle \mathrm{OAP}=8$

$\Rightarrow 1+x+\frac{2(x+1)}{\sqrt{x^{2}-1}}+\sqrt{x^{2}-1}=8$
$\Rightarrow \mathrm{x}=\frac{5}{3}$
81. (B)

Let the equation be $x^{2}+y^{2}-9+\lambda(x+y-1)=0$

For the circle to be smallest the centre $\left(-\frac{\lambda}{2},-\frac{\lambda}{2}\right)$ must lie on $x+y=1$.
$\therefore \lambda=-1$
$\therefore \quad$ Equation is $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\mathrm{y}-8=0$
82. (B)

Using Appollonious theorem,

$$
C P^{2}+C Q^{2}=2\left(C R^{2}+R Q^{2}\right)
$$

$$
16+36=2\left(C R^{2}+4\right)
$$

$$
26=C R^{2}+4
$$

$$
C R=\sqrt{22}
$$

83. (A)
$a \leq \sin A \Rightarrow \frac{a}{\sin A} \leq 1 \Rightarrow 2 R \leq 1 \Rightarrow R \leq \frac{1}{2}$
For any point (x, y) inside the circumcircle, $x^{2}+y^{2}<\frac{1}{4}$

$$
\frac{x^{2}+y^{2}}{2} \geq|x y| \Rightarrow|x y|<\frac{1}{8}
$$

84. (B)

Let the equation of chord be $y=m x+c$; Joint equation of $O A \& O B$ is

$$
\begin{aligned}
& 4 x^{2}+y^{2}-x\left(\frac{y-m x}{c}\right)+4 y\left(\frac{y-m x}{c}\right)=0 \\
& \because O A \perp O B \Rightarrow\left(4+\frac{m}{c}\right)+\left(1+\frac{4}{c}\right)=0 \\
& \Rightarrow 5 c+m+4=0 \\
& \therefore y=m x+c \Rightarrow y+4 x+c(5 x-1)=0 \\
& \Rightarrow \text { passing through the intersection of } \\
& y+4 x=0 \text { and } 5 x-1=0
\end{aligned}
$$

85. (B)

Required Area
$=\pi(4-2)$
$=2 \pi$

86. (C)

Let ' C ' be the centre of the circle $S=0$, then circumcircle of the $\triangle P Q R$ will pass through C.

Hence, $(1,0)$ centre of the circumcircle of PQR is mid-point of PC. Hence, C is $(-2,0)$ so equation of $S=0$ is $(x+2)^{2}+y^{2}=(2 \sqrt{3})^{2}$,

Hence, $(-5, \sqrt{3})$ will be on the circle $S=0$
87. (D)

Here $a x+$ by $=20$ is a chord with $(2,3)$ as its mid-point.
$\Rightarrow-\frac{\mathrm{a}}{\mathrm{b}}=-1 \quad \Rightarrow \mathrm{a}=\mathrm{b}$
Now, $\quad 2 a+3 b=20$

$$
\Rightarrow 5 a=20 \Rightarrow a=b=4
$$

Hence $a^{103}+b^{103}=2^{207}$
88. (D)

$$
\alpha=\frac{\mathrm{h}}{3} \quad \beta=\frac{\mathrm{k}+6}{3}
$$

Hence $\frac{h^{2}}{9}+\frac{(k+6)^{2}}{9}+4 \times \frac{h}{3}-6 \times \frac{k+6}{3}+9=0 \Rightarrow h^{2}+k^{2}+12 h-6 k+9=0$
$\Rightarrow x^{2}+y^{2}+12 x-6 y+9=0$
89. (C)

$$
P \equiv \frac{x}{\cos \frac{\pi}{4}}=\frac{y}{\sin \frac{\pi}{4}}=6 \sqrt{2} \Rightarrow x=6, y=6
$$

Since $P(6,6)$ lie on circle

$$
\begin{equation*}
72+12(g+f)+c=0 \tag{i}
\end{equation*}
$$

Since $y=x$ touches the circle, then

$$
2 x^{2}+2 x(g+f)+c=0 \text { has equal roots } D=0
$$

$$
\begin{equation*}
4(g+f)^{2}=8 c \Rightarrow(g+f)^{2}=2 c \tag{ii}
\end{equation*}
$$

From, we get

$$
(12(\mathrm{~g}+\mathrm{f}))^{2}=[-(\mathrm{c}+72)]^{2} \Rightarrow 144(2 \mathrm{c})=(\mathrm{c}+72)^{2} \Rightarrow(\mathrm{c}-72)^{2}=0 \Rightarrow \mathrm{c}=72
$$

90. (A)

Let O_{1} and O_{2} are the centre of circle with radii r_{1} and r_{2} respectively and $\angle \mathrm{AO} O_{1} \mathrm{O}_{2}=\theta$
$A D=r_{1} \sin \theta ; A D=r_{2} \cos \theta$

$$
A D^{2}\left(\frac{1}{r_{1}^{2}}+\frac{1}{r_{1}^{2}}\right)=1 \Rightarrow A D=\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}} \text { so hence } L=2 A D
$$

