SOLUTIONS

Mentors Eduserv

All India Test Series 2018

 Unit Test-2AIPMT PATTERN

Test Date: 26-08-2017

PHYSICS

1. (1)

By using $\frac{1}{2} m\left(v_{1}^{2}-v_{2}^{2}\right)=$ QV
$\Rightarrow \frac{1}{2} \times 10^{-3}\left\{v_{1}^{2}-(0.2)^{2}\right\}=10^{-8}(600-0)$
$\Rightarrow v_{1}=22.8 \mathrm{~cm} / \mathrm{s}$
2. (1)

When two particles moves towards each other then $v_{1}+v_{2}=6$
When these particles moves in the same direction then $v_{1}-v_{2}=4$
By solving $v_{1}=5$ and $v_{2}=1 \mathrm{~m} / \mathrm{s}$.
3. (4)

According to the question, work done in increasing the separation from a to 2 a is $\mathrm{W}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}$

Here, $U_{i}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q(-2 q)}{a}+\frac{q(-2 q)}{a}+\frac{(-2 q)(-2 q)}{a}\right]$
$=\frac{1}{4 \pi \varepsilon_{0} a}\left[-2 q^{2}-2 q^{2}+4 q^{2}\right]=0 \Rightarrow U_{t}-U_{i}=0$
Hence, $\quad W=0$
4. (3)

The net field will be zero at a point outside the charges and near the charge which is smaller magnitude.

Suppose E.F. is zero at P as shown.
Hence at P; k. $\frac{8 q}{(L+I)^{2}}=\frac{k \cdot(2 q)}{I^{2}} \Rightarrow I=L$
So distance of P from origin is $L+L=2 L$
5. (3)
$\mathrm{F}_{\text {ini. }}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{12 \times(-8)}{\mathrm{r}^{1}}=\frac{-1}{4 \pi \varepsilon_{0}} \times \frac{96}{\mathrm{r}^{2}}$
$q_{1}+q_{2}=\frac{12-8}{2}=\frac{4}{2}=2 \mu \mathrm{~F}$
$\therefore \quad F_{\text {final }}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{2 \times 2}{r^{2}}=\frac{4}{r^{2}} \times \frac{1}{4 \pi \varepsilon_{0}}=\frac{4}{r^{2}} \times \frac{1}{4 \pi \varepsilon_{0}}$
$\therefore \frac{|F|_{\text {ini. }}}{|F|_{\text {final }}}=\frac{96}{4}=24: 1$
6. (3)

Number of electrons,

MEAITS 2018_Unit Test-2 (NEET_Sol.)_26-08-17
$\mathrm{n}=\frac{6 \times 10^{23}}{63.5} \times 10 \times \frac{1}{10^{6}}=\frac{6 \times 10^{18}}{63.5}$
$\mathrm{q}=\frac{6 \times 10^{18} \times 1.6 \times 10^{-19}}{63.5} \mathrm{C}=1.5 \times 10^{-2} \mathrm{C}$
$F=\frac{9 \times 10^{9} \times 1.5 \times 10^{-2} \times 1.5 \times 10^{-2}}{\left(\frac{10}{100}\right)}=2.0 \times 10^{8} \mathrm{~N}$
7. (3)
$\tau=\mathrm{PE} \sin \theta$
$4=P \times 2 \times 10^{5} \times \frac{1}{2}$
$\Rightarrow P=4 \times 10^{-5} \mathrm{~cm}=\mathrm{q} \times 2 \times 10^{-2}$
So $\mathrm{q}=\frac{4 \times 10^{-5}}{2 \times 10^{-2}}=2 \times 10^{-3}$ coulomb
8. (3)

$E=\frac{\Delta U}{d \sin 30^{\circ}}=200 V / m$
9. (2)
10. (3)
$V(x, y, z)=6 x y-y+2 y z$
$E_{x}=\frac{\partial V}{\partial x}=-6 y=-6$
$E_{y}=-\frac{\partial V}{\partial y}-6 x+1+2 z=-5$
$E_{z}=\frac{\partial V}{\partial z}=-2 y=-2$
$\vec{E}=E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k}$
$\vec{E}=-6 \hat{j}-5 \hat{j}-2 \hat{k}$
$=-(6 \hat{\mathbf{i}}+5 \hat{\mathbf{i}}+7 \hat{\mathbf{k}})$
11. (2)

As electric field is a conservative field.
Hence the work done does not depend on path

$\therefore \mathrm{W}_{\mathrm{ABCD}}=\mathrm{W}_{\mathrm{AOD}}=\mathrm{W}_{\mathrm{AO}}+\mathrm{W}_{\mathrm{OD}}$
$=\mathrm{Fb} \cos 90^{\circ}+\mathrm{Fa} \cos 180^{\circ}=0+\mathrm{qEa}(-1)=-\mathrm{qEa}$
12. (1)

Intensity at 5 m is same as at any point between B and C because the slope of $B C$ is same throughout (i.e., electric field between B and C is uniform). Therefore electric field at $R=5 \mathrm{~m}$ is equal to the slope of
line $B C$ hence by $E=\frac{-d V}{d r}$;
$E=-\frac{(0-5)}{6-4}=2.5 \frac{\mathrm{~V}}{\mathrm{~m}}$

13. (1)

Electric lines of force start (i.e. diverge out) from positive charge and end (i.e. coverage) on negative charge or extends to infinity. Thus, A is positive charge and b is negative charge. Also, density of lines at A is more than that at B, i.e. $|A|>|B|$.
14. (2)

Let the point P be at distance x from the centre of A where the electric field intensity is zero.

$\frac{1}{4 \pi \varepsilon_{0}} \frac{9 C}{x^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 C}{(10 m-X)^{2}} \Rightarrow \frac{9}{x^{2}}=\frac{4}{(10 m-x)^{2}}$
$\frac{3}{x}=\frac{2}{10 m-x}$ or $30 m-3 x=2 x$
$5 \mathrm{x}=30 \mathrm{~m}$ or $\mathrm{x}=\frac{30 \mathrm{~m}}{5}=6 \mathrm{~m}$
15. (2)

In the following figure, in equilibrium $\mathrm{F}_{\mathrm{e}}=\mathrm{T} \sin 30^{\circ}, r=1 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow \quad 9 \times 10^{9} \cdot \frac{Q^{2}}{r^{2}}=\mathrm{T} \times \frac{1}{2} \\
& \Rightarrow \quad 9 \times 10^{9} \cdot \frac{\left(10 \times 10^{-6}\right)^{2}}{1^{2}}=\mathrm{T} \times \frac{1}{2} \Rightarrow \mathrm{~T}=1.8 \mathrm{~N}
\end{aligned}
$$

16. (2)

The schematic diagram of distribution of charges on x-axis is shown in figure.

Total force acting on 1 C charge is given by
$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{1 \times 1 \times 10^{-6}}{(1)^{2}}+\frac{1 \times 1 \times 10^{-6}}{(2)^{2}}+\frac{1 \times 1 \times 10^{-6}}{(4)^{2}}+\frac{1 \times 1 \times 10^{-6}}{(8)^{2}}+\ldots \infty\right]$
$=\frac{10^{-6}}{4 \pi \varepsilon_{0}}\left(\frac{1}{1}+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \infty\right)$
$=9 \times 10^{9} \times 10^{-6}\left(\frac{1}{1-\frac{1}{4}}\right)$
$=9^{3} \times 10^{3}\left(\frac{1}{3 / 4}\right)=12 \times 10^{3}=12000 \mathrm{~N}$
17. (1)
$F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$
$\left(q_{1}\right)_{\text {minimum }}=\left(q_{2}\right)_{\text {minimum }}$
$r=1 m$
$\therefore F=\left(9.0 \times 10^{9}\right)\left(1.6 \times 10^{-19}\right)^{2}$
$=2.3 \times 10^{-28} \mathrm{~N}$
18. (1)
$d V=-\vec{E} \cdot \vec{d} r$
$=-(y \hat{i}+x \hat{j}) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k})$
$=-(y d x+x d y)=-d(x y)$
Integrating, we get
$V=-x y+$ constant.

6]
19. (3)
$V_{1}-V_{2}=k q\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)=k g\left(\frac{r_{2}-r_{1}}{r_{1} r_{2}}\right)$
i.e. $\quad\left(r_{2}-r_{1}\right)=\frac{\left(V_{1}-V_{2}\right) r_{1} r_{2}}{k q}$

$$
\begin{array}{ll}
& \left(r_{2}-r_{1}\right)=t \\
\therefore \quad t & t \propto r_{1} r_{2}
\end{array}
$$

20. (4)
$A=(2,2)$ and $B=(4,1)$
Now $\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{B}}=\mathrm{q}\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
$\int_{A}^{B} d V=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d r}$
or, $\quad V_{B}-V_{A}=-\int_{(2.2)}^{(4.1)}(y \hat{i}+x \hat{j})$.
$(d x \hat{i}+d y \hat{j}+d z \hat{k})$
or, $\quad V_{B}-V_{A}=-\int_{(2.2)}^{(4.1)}(y d x+x d y)$

$$
=-\int_{(2.2)}^{(4.1)} d(x y)=[-x y]_{2.2}^{4.1}=0
$$

$\therefore \quad \mathrm{W}_{\mathrm{A} \rightarrow \mathrm{B}}=0 \quad$ [from Eq. (1)]
21. (3)
$V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R}$
$\therefore \quad \frac{q}{4 \pi \varepsilon_{0}}=R V \Rightarrow E(r)=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}=\frac{R V}{r^{2}}$
22. (2)
$E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R^{2}} \propto \frac{1}{R^{2}} \quad(q=$ constant $)$
Radius is halved. Therefore, electric field will become 4 times or 4E
Further, $V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R} \propto \frac{1}{R \quad(q=\text { constant }) ~}$
Radius is halved, so potential will become two times or 2 V .
23. (2)
$\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$ or $\cot \theta=\frac{1}{\sqrt{2}} \quad \tan \phi=\frac{\tan \theta}{2}=\frac{\sqrt{2}}{2}$
$=\frac{1}{\sqrt{2}}=\cot \theta \quad\left(\tan \phi=\frac{\mathrm{E}_{\theta}}{\mathrm{E}_{\mathrm{r}}}=\frac{\tan \theta}{2}\right)$
$\therefore \phi=90^{\circ}-\theta$
i.e, \vec{E} is along positive y-axis.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
24. (1)

In such situation potential difference depends only on the charge on inner sphere. Since, charge on inner sphere is unchanged. Therefore, potential difference V will remains unchanged.
25. (2)
26. (2)
27. (2)
28. (1)

If t_{1} and $2 t_{2}$ are the time taken by particle to cover first and second half distance, respectively

$$
t_{1}=\frac{x / 2}{3}=\frac{x}{6}
$$

$$
\mathrm{x}_{1}=4.5 \mathrm{t}_{2} \text { and } \mathrm{x}_{2}=7.5 \mathrm{t}_{2}
$$

So, $x_{1}+x_{2}=\frac{x}{2}$
$\Rightarrow 4.5 t_{2}+7.5 t_{2}=\frac{x}{2} \Rightarrow t_{2}=\frac{x}{24}$
Total time, $t=t_{1}+2 t_{2}=\frac{x}{6}+\frac{x}{12}=\frac{x}{4}$
So, average speed $=4 \mathrm{~ms}^{-1}$
29. (3)
$y=a+b t+c t^{2}-d t^{4}$
$\therefore v=\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{b}+2 \mathrm{ct}-4 \mathrm{dt}^{3}$
and $\mathrm{a}=\frac{\mathrm{d} v}{\mathrm{dt}}=2 \mathrm{c}-12 \mathrm{dt}^{2}$
Hence, at $t=0, v_{\text {initial }}=b$ and $a_{\text {initial }}=2 c$
30. (3)

$$
\begin{aligned}
v=A t & +B t^{2} \Rightarrow \frac{d x}{d t}=A t+B t^{2} \Rightarrow \int_{0}^{x} d x=\int_{1}^{2}\left(A t+B t^{2}\right) d t \\
\Rightarrow x & =\frac{A}{2}\left(2^{2}-1^{2}\right)+\frac{B}{3}\left(2^{3}-1^{3}\right)=\frac{3 A}{2}+\frac{7 B}{3}
\end{aligned}
$$

31. (3)

Velocity of particle $v=\frac{\mathrm{dx}}{\mathrm{dt}}=4-2 \mathrm{t}$
When velocity is zero, $0=4-2 t \Rightarrow t=2$ sec
$X=4(2)-\left(2^{2}\right)=4 m$
32. (2)

We know that $S_{n t h}=u+\frac{1}{2} a(2 n-1)$
$S_{3 \mathrm{rd}}=0+\frac{1}{2} a(2 \times 3-1)=\frac{5}{2} a($ For $n=3 s)$
$S_{4 \text { th }}=0+\frac{1}{2} a(2 \times 4-1)=\frac{7}{2} a($ for $n=4 s)$
$=\frac{S_{4 \text { th }}-S_{3 \text { rd }}}{S_{3 \text { rd }}} \times 100=\frac{\frac{7}{2 a}-\frac{5}{2 a}}{\frac{5}{2 a}} \times 100$
$=\frac{\frac{2 a}{2}}{\frac{5}{2} a} \times 100=2 \times 20=40 \%$
33. (1)

Velocity of the particle is given as

$$
\mathrm{u}=\sqrt{180-16 \mathrm{x}} \mathrm{~m} / \mathrm{s}
$$

Squaring on both sides

$$
v^{2}=180-16 x
$$

Now compare with

$$
\begin{aligned}
& v^{2}=u^{2}+2 \mathrm{as} \\
& \Rightarrow 2 \mathrm{a}=-16 \\
& \Rightarrow \mathrm{a}=-8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

34. (3)

Stopping distance, $S=\frac{u^{2}}{2 a}$
$\Rightarrow \frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}=\left(\frac{\mathrm{u}_{2}}{\mathrm{u}_{1}}\right)^{2} \Rightarrow \frac{\mathrm{~S}_{2}}{6}=\left(\frac{100}{50}\right)^{2}=4$
$\Rightarrow S_{2}=24 \mathrm{~m}$
35. (1)

Let the initial velocity $=u$ and acceleration $=a$
In 1 st case, $S_{1}=u t_{1}+\frac{1}{2} \mathrm{at}_{1}^{2}$
$200=2 u+2 a \quad\left(\because t_{1}=2 s\right)$
$100=u+a$
In $2 n d$ case, $S_{2}=u t_{2}+\frac{1}{2} \mathrm{at}_{2}^{2}$

$$
\begin{array}{cc}
420=6 u+18 a \\
3 a+u=70 & \left(\because t_{2}=2+4=6 s\right) \tag{ii}\\
\ldots . .(i i)
\end{array}
$$

Solving Eqs. (i) and (ii) we get

$$
\mathrm{a}=-15 \mathrm{~ms}^{-2} \text { and } \mathrm{u}=115 \mathrm{~ms}^{-1}
$$

$\therefore \quad v=u+a t=115-15 \times 7=10 \mathrm{~ms}^{-1}$
36. (3)

Distance travelled in fifth second for first body = distance travelled in 3rd second for second body.

$$
\begin{aligned}
& S_{5}=S_{3} \\
& S_{n^{t h}}=u+\frac{(2 n-1) a}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{5}=0+\frac{9}{2} \mathrm{a}_{1} \\
& \mathrm{~S}_{3}=0+\frac{5}{2} \mathrm{a}_{2} \\
& \frac{9}{2} \mathrm{a}_{1}=\frac{5}{2} \mathrm{a}_{2} \Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{5}{9}
\end{aligned}
$$

37. (1)

Since, body starts from rest $\mathrm{u}=0$, Let t_{1} be time when body accelerates and t_{2} when it decelerates.

$$
\begin{array}{ll}
\therefore & \mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2} \Rightarrow \mathrm{t}_{2}=\mathrm{t}-\mathrm{t}_{1} \\
\therefore & v=0+\mathrm{at}_{1} \tag{i}
\end{array}
$$

When car finally comes to rest, $v=0$
$\therefore \quad 0=v-b\left(t-t_{1}\right)$
From Equestion (i) and (ii), we get
$t_{1}=\frac{b}{(a+b)} t$ and $v=\frac{a b}{(a+b)} t$
38. (4)

By the definition, the slope of displacement time graph is velocity.

$$
\text { i.e., } v=\tan \theta
$$

$\therefore \frac{v_{1}}{v_{2}}=\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\tan 30^{\circ}}{\tan 45^{\circ}} \Rightarrow \frac{v_{1}}{v_{2}}=\frac{1}{\sqrt{3}}$
39. (3)

Initial relative velocity $=v_{1}-v_{2}$, Find relative velocity $=0$
From
$v^{2}=u^{2}-2 a s \Rightarrow 0=\left(v_{1}-v_{2}\right)^{2}-2 \times a \times s$
$\Rightarrow \mathrm{s}=\frac{\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)^{2}}{2 \mathrm{a}}$
If the distance between two cars is 's' then collision will take place. to avoid collision $d>s$
$\therefore \quad d>\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$
Where d = actual initial distance between two cars.
40. (1)

Given line have positive intercept but negative slope. So its equation can be written as
$v=-m x+v_{0}$
[where $\mathrm{m}=\tan \theta=\frac{\mathrm{v}_{0}}{\mathrm{x}_{0}}$]
By differentiating with respect to time we get
$\frac{d v}{d t}=-m \frac{d x}{d t}=-m v$
Now substituting the value of v from eq. (i) we get
$\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{m}\left[-\mathrm{mx}+\mathrm{v}_{0}\right]=\mathrm{m}^{2} \mathrm{x}-\mathrm{mv}_{0} \therefore \mathrm{a}=\mathrm{m}^{2} \mathrm{x}-\mathrm{mv}_{0}$
i.e., the graph between a and x should have positive slope but negative intercept on a axis.
41. (4)

Let the height of tower be h and the body takes time n to reach the ground when it falls freely.
$\therefore \mathrm{h}=\frac{1}{2} \mathrm{gn}^{2}$
In the last second. i.e., in nth second the body travels 0.36 h . In $|\mathrm{t}-1| \mathrm{sec}$, it travels.
$1 h-0.36 h=0.64 h$
From Equation (i) $0.64 h=\frac{1}{2} g(n-1)^{2}$
$\frac{0.64}{1}=\frac{(n-1)^{2}}{n^{2}} \Rightarrow \frac{8}{10}=\frac{n-1}{n}$
$\Rightarrow 8 n=10 n-10$
$\Rightarrow \quad n=5$
From Equation (i) $\mathrm{h}=\frac{1}{2} \times 9.8 \times 25$
$h=12.5 \times 9.8=122.5=123 \mathrm{~m}$
42. (3)

Since, direction of v is opposite to the distance of g and h, so from equation of motion
$h=-v t+\frac{1}{2}{g t^{2}}^{2} \Rightarrow g t^{2}-2 v t-2 h=0$
$\Rightarrow t=\frac{2 v \pm \sqrt{4 v^{2}+8 g h}}{2 g} \Rightarrow t=\frac{v}{g}\left(1+\frac{\sqrt{1+2 g h}}{v^{2}}\right)$
43. (4)

Total time of flight $T=t_{1}+t_{2}=\frac{2 u}{g}$
$\Rightarrow \mathrm{u}=\frac{\mathrm{g}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}{2}$
44. (2)

Taking downward motion of the first stone from A to ground, we have
$\mathrm{h}=-\mathrm{ut}_{1}+\frac{1}{2} \mathrm{gt}_{1}^{2}$
Taking downward motion of second stone from a to ground, we have
$\mathrm{h}=\mathrm{ut}_{2}+\frac{1}{2} \mathrm{gt}_{2}^{2}$
Third stone $\mathrm{h}=\frac{1}{2} \mathrm{gt}_{3}^{2}$
Multiplying Equation (i) by t_{2} and Equation (ii) by t_{1} and adding, we get

$$
\begin{align*}
& \mathrm{h}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \\
& \Rightarrow \quad \mathrm{h}=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2} \tag{iv}
\end{align*}
$$

From Equation (iii) and (iv), we get
$t_{3}^{2}=t_{1} t_{2}$ or $t_{3}=\sqrt{t_{1} t_{2}}=\sqrt{9 \times 4}=6 \mathrm{~s}$
45. (1)

Let $\mathrm{v}_{\mathrm{PG}}=$ velocity of police w.r.t. ground
$\mathrm{V}_{\mathrm{TG}}=$ velocity of thief w.r.t. ground $=\mathrm{V}_{\mathrm{TG}}-\mathrm{v}_{\mathrm{PG}}$
$=\left(\frac{153-45}{18}\right) \times 5=30 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{BC}}=$ velocity of bullet w.r.t. car
$=180-30=150 \mathrm{~m} / \mathrm{s}$

CHEMISTRY

46. (2)

As N imparts more resonance than ' O '.
47. (4)

Cross conjugation is present in (4) as in a set of three π - bond only two π-bonds interact with each - other by conjugation while the 3rd one is excluded from interation.
48. (2)

49. (3)

Due to SIR -effect
50. (2)
(iv > iii > i > ii) In case of (iv) $-\mathrm{NH}_{2}$ group is attached to sp^{3} hybridized c-atom while in others d . b character appears. In case of (iii) bond-length is slightly greater then (i) as $-\mathrm{OCH}_{3}$ gr. is presed at p pasition while in (ii) $-\mathrm{NO}_{2}$ strecture decreases their bond length.
51. (1)
$(x-y$ i.e. $7-3=4)$
52. (3)

Due to resonance d.b.appears $\mathrm{b} / \mathrm{w} \mathrm{O} \& \mathrm{C}$ which shortened their bond length
53. (4)
is (4) as aromatic behaviour does not appear.
54. (1)
55. (4)

56. (4)

Does not obey huckel's rule
57. (1)

As product plus intermediate is formed and intermediate is aromatic stabilized
58. (2)

Due to more conjngation C - O bond length is maximum in (ii) and then (i) = (iii) \& minimum in (iv) because only d.b. character is present $b / w C \& O$.
ii > i $=$ iii > iv
59. (3)

Ionisation of $C-X$ bond α stability of carbocation
60. (3)

In polar form it is unstable due to anti aromatic behaviours
61. (1)
70% by mass $70 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 100 \mathrm{~g}$ solution / sample
$\mathrm{V}=\frac{\mathrm{w}}{\mathrm{d}}=\frac{100}{1.54} ; \mathrm{M}=\frac{70 \times 1000}{98 \times 100 / 1.54}=11 \mathrm{M}$
62. (2)
KMnO_{4} oxalic acid
$\frac{M_{1} V_{1}}{n_{1}}=\frac{M_{2} V_{2}}{n_{2}} \Rightarrow \frac{20 \times 0.1}{2}=\frac{M_{2} V_{2}}{5} \Rightarrow M_{2} V_{2}=5$
63. (1)
$\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow(\mathrm{Y})+10 \mathrm{e}$
$\because \quad \mathrm{Y}$ contains all N -atoms.
$\therefore \quad \mathrm{N}_{2}^{2-} \rightarrow(2 \mathrm{~N})^{\mathrm{a}}+10 \mathrm{e}$
$\therefore 2 a+2 \times(2)=10$
$\therefore \quad a=+3$
64. (2)

$$
\underset{+4}{\mathrm{SO}_{2}}+\underset{-2}{2 \mathrm{H}_{2} \mathrm{~S}} \rightarrow 3 \mathrm{~S}+\underset{0}{2 \mathrm{H}_{2} \mathrm{O}}
$$

Eq. mass $=\frac{M}{4}=\frac{64}{4}=16$;
Twice 16×2=32
65. (1)
$\because \quad 1.12$ litre H_{2} displace by 1.2 g metal
$\therefore \quad 22.4$ litre H_{2} displace by $=24 \mathrm{~g}$ metal
66. (1)

The ion which is not affected during the course of reaction is known as spectator ion.
67. (3)
$\stackrel{0}{\mathrm{P}}+\mathrm{NaOH} \rightarrow \mathrm{PH}_{3}^{-3}+\mathrm{NaH}_{2} \mathrm{PO}_{2}^{+1}$
In above reaction, the the ox. no. of P increases from zero to +1 in $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ and decrease zero to -3 in PH_{3}. Thus P is oxidised as well as reduced and it is redox reaction.
68. (1)

$$
\begin{aligned}
& \quad \stackrel{0}{\mathrm{P}}+\mathrm{NaOH} \rightarrow \mathrm{PH}_{3}^{-3}+\mathrm{NaH}_{2} \mathrm{PO}_{2}^{+1} \\
& \\
& \frac{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Sn}^{2+} \rightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}} \\
& \because \quad 3 \text { mole of } \mathrm{Sn}^{2+} \text { reduced }=1 \text { mole of } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\
& \therefore \quad 1 \text { mole of } \mathrm{Sn}^{2+} \text { reduced }=\frac{1}{3} \text { mole of } \mathrm{Cr}_{2} \mathrm{O}_{4}^{2-}
\end{aligned}
$$

69. (2)

$$
\begin{array}{ll}
\stackrel{\mathrm{a}}{2} \mathrm{O}_{4}^{2-}: 2 \mathrm{a}+4 \times(-2)=-2 \\
\therefore & \mathrm{a}=+3 \\
\stackrel{\mathrm{a}}{\mathrm{SO}_{3}^{2-}}: & \mathrm{a}+3 \times(-2)=-2
\end{array}
$$

$$
\begin{array}{lc}
\therefore & \mathrm{a}=+4 \\
\mathrm{~S}_{2} \mathrm{O}_{6}^{2-} & : 2 \mathrm{a}+6 \times(-2)=-2 \\
\therefore & \mathrm{a}=+5 \\
\therefore & \mathrm{~S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}
\end{array}
$$

70. (2)

$$
\frac{\text { Molecular }}{6} \text {, Because in } \mathrm{KIO}_{3} \text { effective oxidation number is } 6 .
$$

71. (3)
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}_{5}+5 \mathrm{O}$
$\frac{2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}_{5}+5 \mathrm{O}}{2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}}$
$\because \quad 2$ mole of KMnO_{4} decolorised by 5 mole of $\mathrm{H}_{2} \mathrm{O}_{2}$
$\therefore \quad 1$ mole of KMnO_{4} decolorised by $5 / 2$ mole of $\mathrm{H}_{2} \mathrm{O}_{2}$
72. (3)
$\mathrm{KMnO}_{4}^{+7}+\mathrm{SO}_{3}^{+4} \rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{+6}$
$\mathrm{n}=5 \quad \mathrm{n}=2$
$\because \quad 5$ mole of $\mathrm{SO}_{3}{ }^{2-}$ react with 2 mole KMnO_{4}
$\therefore \quad 1$ mole of $\mathrm{SO}_{3}{ }^{2-}$ react with $2 / 5$ mole KMnO_{4}.
73. (3)
$1 \mathrm{O}_{3}^{-}: \quad \mathrm{a}+3 \times(-2)=-1$
$\therefore \quad \mathrm{a}=+5$
$1 \mathrm{O}_{4}^{-}: \quad a+4 \times(-2)=-1$
$\therefore \quad \mathrm{a}=+7$
KI: $\quad 1+a=0$
$\therefore \quad a=-1$
$I_{2}^{a}: \quad 2 a=0$
$\therefore \quad \mathrm{a}=0$
74. (4)
$8 \mathrm{KMnO}_{4}+3 \mathrm{NH}_{3} \rightarrow 3 \mathrm{KNO}_{3}+8 \mathrm{MnO}_{2}+5 \mathrm{KOH}+2 \mathrm{H}_{2} \mathrm{O}$
75. (2)

In $\mathrm{NH}_{2} \mathrm{OH}$ ox. state of $\mathrm{N}=-1$
In $\mathrm{N}_{2} \mathrm{O}$ ox. state of $\mathrm{N}=+1$
$\therefore \quad$ Change in ox. state $=2$
Eq. mass $=\mathrm{M} / 2$
76. (3)

77. (3) 78. (2)
79. (4)

Among given non-metals, $\mathrm{O}-a t o m$ has high electron affinity and strong ionic bond is formed between Al and O atom.
80. (4)
81. (3)
82. (4)
83. (3)
84. (3)
85. (3)
86. (2)
87. (2)
88. (1)
89. (4)
90. (4)

Lattice energy released in case of MgO is maximum giving highest contribution to ionic nature of ionic bond.

BOTANY

91. (4) Cell growth results in low metabolic activity \& low nucleocyto-plasmic ratio so cell divides.
92. (2)
93. (1)
94. (4)
$\mathrm{G}_{1}, \mathrm{~S}, \mathrm{G}_{2}$ phases are part of interphase
95. (4)

M-Phase is the phase of actual cell division
96. (2)

Interphase comes between 2-successive M-Phases.
97. (3)
98. (1)

About 5\% of total time is consumed during M-Phases
99. (1)
100. (3)
101. (2)

Inhibited synthesis of tubulin will inhibit cell division at Metaphase
102. (3)
103. (1)
G_{1}-Phase comes between M-Phase \& The S-Phase.
104. (2)
105. (1)
G_{1}-Phase does not include Genomic Duplication
106. (3) 107. (2)
108. (2)

During G_{0}-Phase cell cannot divide.
109. (4) 110. (1) 111. (1)
112. (2)

Prophase is marked by chromosomal condensation
113. (1)
114. (1)

Figure belongs to Metaphase
115. (4) 116. (2) 117. (2) 118. (4)
119. (2) 120. (1) 121. (3)
122. (1)

Syncytium arise due to Nuclear Div. without cytoplasmic Div.
123. (1) 124. (2) 125. (3) 126. (2)
127. (2)
128. (3)
129. (3) 130. (4)
131. (2) Anaphase- I does not involve centromeric division.
132. (3) 133. (1) 134. (2) 135. (4)

ZOOLOGY

136. (4)

$$
\begin{aligned}
& \text { Raffinose }=\text { glucose }+ \text { fructose }+ \text { galactose } \\
& \text { Sucrose }=\text { glucose }+ \text { fructose } \\
& \text { Lactose }=\text { glucose }+ \\
& \text { galactose } \\
& \quad \begin{array}{l}
\text { Fructose is not } \\
\text { produced } \\
\text { by their mixture }
\end{array} \\
& \text { Maltose }=\text { glucose + glucose }
\end{aligned}
$$

137. (3)

Cellulose is a secondary metabolite.
138.
(4)

Glucose has aldehyde group as functional group which reduces Cu^{++}to Cu^{+}. So, it is a reducing sugar.
139. (4)

Pentose and hexoses both show open chains as well as ring forms.
140. (1)

Oligosaccharides are made up to 2 to 9 molecules of mono saccharides.
141. (1)

Sucrose is the non-reducing sugar.
142. (1)

Fructose is the source of energy found in human's semen. It is secreted by seminal vesicle.
143. (1)

Dental carries are prevented by Fluorine.
144. (2)

Raffinose is a trisaccharide carbohydrate.
145. (2)

Agar is mucopolysaccharide
146. (4)
147. (1)

Agar is mucopolysaccharide.
148. (1)

Linoleic acid has two double bonds, linolenic acid has three double bonds. Arachidonic acid has four double bonds. Palmitic acid has no double bonds.
149. (1)

Wax-D - Bacteria wax
Cutin - Lipid occurs in the aerial epidermal cell walls.
Lanolin - Protective water insoluble coating on animal far
Cerumen - ear wax
150. (1)
151. (1)

Acidic amino acids -
(i) Aspartic acid/aspartate
(ii) Glutamic acid

Basic amino acids -
(i) Arginine
(ii) Lysine
152. (1)
153. (4)

Melatonin is synthesized from amino acid tryptophan.
154. (3)

Primary structure of proteins are linear polypeptide chains in which acids are held together with peptide bonds.
155. (4)
156. (3)

Nicotinamide and riboflavin are nucleotides of vitamins which do not participates in the formation of nucleic acids.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
157. (4)
$\mathrm{A}=\mathrm{G}$ and $\mathrm{C}=\mathrm{T}$ are not constant.
but $A=T$ and $G=C$ because they show pairing.
158. (4)

$$
\begin{array}{ll}
\text { RNA - Sugar } & - \text { Ribose, pyrimidine uracil } \\
\text { DNA - Sugar } & - \text { Dexoyribose, pyrimidine - thymine in place of uracil as that in RNA } \\
\text { A.G. (Purines), pyrimidine (cytosine) and phosphate are same in DNA and RNA. }
\end{array}
$$

159. (1)
m-RNA - 1 - 5%
r-RNA - 80\% - 85\%
t-RNA - 10-15\%
160. (3)
161. (1)

Z-form DNA = 12 bp per turn
A form DNA $=11 \mathrm{bp}$ per turn
B DNA $=10 \mathrm{bp}$ per turn
C DNA $=9 \mathrm{bp}$ per turn
D DNA $=8 \mathrm{bp}$ per turn
E DNA $=7.5 \mathrm{bp}$ per turn
162. (3)
163. (3)

Both strands of DNA are held together with the help of H -bonding in between N -base pairs.
164. (3)

The width between the two back bone of DNA is constant due to H-bonding of a purine with an other pyrimidine. Purine is a double ring structure while a pyrimidine is a single ring structure.
165. (1)
166. (1)

Sulpha drugs (e.g., salphanilamide) inhibit the synthesis of folic acid in bacteria by competing with Pamino benzoic acid (PABA) for the active site of enzyme.
ATP inhibits the activity of phosphofructosekinase and isoleucine inhibits the activity of theonine deaminase by allosteric modulation.
167. (4)
168. (2)
169. (1)
α-amylase of wheat endosperm has 16 isoenzymes lactic acid dehydrogenase has 5 isoenzymes. Alcohol dehydrogenase has 4 isoenzymes.
170. (4)

In a non-competitive inhibition K_{m} value is constant or remain same, while $\mathrm{V}_{\text {max }}$ decreases by adding inhibitor.
171. (4)
172. (4)

The functioning of catalysts is not controlled by regulators molecules.
173. (4) 174. (1) 175. (4) 176. (2)
177. (2) 178. (1) 179. (3) 180. (4)

