## SOLUTIONS

## Mentors Eduserv All India Test Series 2018 Unit Test-2 AIPMT PATTERN Test Date: 26-08-2017

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No.: 0612-3223680 / 81, 7781005550 / 51

PHYSICS  
1. (1)  
By using 
$$\frac{1}{2}m(u_1^2 - u_2^2) - QV$$
  
 $\Rightarrow \frac{1}{2} \times 10^{-3} \{u_1^2 - (0.2)^2\} = 10^{-6} (600 - 0)$   
 $\Rightarrow u_1 = 22.8 \text{ cm} / \text{s}$   
2. (1)  
When two particles moves towards each other then  $v_1 + v_2 = 6$   
When these particles moves in the same direction then  $v_1 - v_2 = 4$   
By solving  $v_1 = 5$  and  $v_2 = 1 \text{ m/s}$ .  
3. (4)  
According to the question, work done in increasing the separation from a to 2a is  $W = U_1 - U_1$   
 $\frac{a}{\sqrt{-2d}} = \frac{1}{2-2q} + \frac{2a}{\sqrt{-2a}} = \frac{2a}{-2q}$   
Here,  $U_1 = \frac{1}{4\pi c_0} \left[ \frac{(-2q)}{2a} + \frac{(-2q)}{a} + \frac{(-2q)(-2q)}{a} \right]$   
 $= \frac{1}{4\pi c_0} \left[ \frac{(-2q)}{2q^2 - 2q^2} + 4q^2 \right] = 0 \Rightarrow U_1 - U_1 = 0$   
Hence,  $W = 0$   
4. (3)  
The net field will be zero at a point outside the charges and near the charge which is smaller magnitude.  
 $\frac{+8q}{\sqrt{U_1 + 1)^2}} = \frac{\sqrt{-2q}}{(U_1 + 1)^2} = \frac{V_1}{(U_2)} \Rightarrow 1 = L$   
So distance of P from origin is  $L + L = 2L$   
5. (3)  
 $F_{m} = \frac{1}{4\pi c_0} \times \frac{12 - 6}{r^2} = \frac{4}{r^2} \times \frac{1}{4\pi c_0} = \frac{4}{r^2} \times \frac{1}{4\pi c_0}$   
 $\therefore F_{wall} = \frac{1}{4\pi c_0} \times \frac{2x_2}{r^2} = \frac{4}{r^2} \times \frac{1}{4\pi c_0} = \frac{4}{r^2} \times \frac{1}{4\pi c_0}$   
 $\therefore F_{wall} = \frac{1}{4\pi c_0} \times \frac{2x_2}{r^2} = \frac{4}{r^2} \times \frac{1}{4\pi c_0} = \frac{4}{r^2} \times \frac{1}{\pi c_0}$ 



[2]

$$n = \frac{6 \times 10^{23}}{63.5} \times 10 \times \frac{1}{10^{6}} = \frac{6 \times 10^{18}}{63.5}$$

$$q = \frac{6 \times 10^{18} \times 1.6 \times 10^{-19}}{63.5} C = 1.5 \times 10^{-2} C$$

$$F = \frac{9 \times 10^{9} \times 1.5 \times 10^{-2} \times 1.5 \times 10^{-2}}{\left(\frac{10}{100}\right)} = 2.0 \times 10^{8} N$$
7. (3)  

$$\tau = PE \sin \theta$$

$$4 = P \times 2 \times 10^{5} \times \frac{1}{2}$$

$$\Rightarrow P = 4 \times 10^{-5} \text{ cm} = q \times 2 \times 10^{-2}$$
So  $q = \frac{4 \times 10^{-5}}{2 \times 10^{-2}} = 2 \times 10^{-3}$  coulomb  
8. (3)  

$$\int \frac{10^{10}}{\sqrt{20^{10}}} = 200 V / m$$
9. (2)  
10. (3)  

$$V(x, y, z) = 6xy - y + 2yz$$

$$E_{x} = \frac{\partial V}{\partial x} = -6y = -6$$

$$E_{y} = -\frac{\partial V}{\partial y} - 6x + 1 + 2z = -5$$

$$E_{z} = \frac{\partial V}{\partial z} = -2y = -2$$

$$\vec{E} = E_{x} \hat{i} + E_{y} \hat{j} + E_{z} \hat{k}$$

$$\vec{E} = -6 \hat{j} - 5 \hat{j} - 2\hat{k}$$

$$= -(6\hat{i} + 5\hat{i} + 7\hat{k})$$
11. (2)  
As electric field is a conservative field.  
Hence the work done does not depend on path

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5



[3]







[5]

6] MEAITS 2018\_Unit Test-2 (NEET\_Sol.)\_26-08-17 19. (3)  $V_1 - V_2 = kq \left( \frac{1}{r_1} - \frac{1}{r_2} \right) = kg \left( \frac{r_2 - r_1}{r_1 r_2} \right)$ i.e.  $(r_2 - r_1) = \frac{(V_1 - V_2)r_1r_2}{kq}$  $(r_2 - r_1) = t$  $\therefore$  t  $\propto$  r<sub>1</sub>r<sub>2</sub> 20. (4) A = (2, 2) and B = (4, 1).....(1) Now  $W_{A \rightarrow B} = q(V_B - V_A)$  $\int_{A}^{B} dV = -\int_{A}^{B} \vec{E}.\vec{d}r$ or,  $V_{\rm B} - V_{\rm A} = -\int_{(2.2)}^{(4.1)} (y\hat{i} + x\hat{j}).$  $(dx\hat{i} + dy\hat{j} + dz\hat{k})$ or,  $V_{B} - V_{A} = -\int_{(2,2)}^{(4,1)} (ydx + xdy)$  $=-\int_{(2,2)}^{(4.1)} d(xy) = [-xy]_{2.2}^{4.1} = 0$  $\therefore$   $W_{A \rightarrow B} = 0$ [from Eq. (1)] 21. (3)  $V = \frac{1}{4\pi\epsilon_n} \cdot \frac{q}{R}$  $\therefore \quad \frac{q}{4\pi \epsilon_0} = RV \implies E(r) = \frac{1}{4\pi \epsilon_0} \cdot \frac{q}{r^2} = \frac{RV}{r^2}$ 22. (2)  $\mathsf{E} = \frac{1}{4\pi \, \varepsilon_{0}} \cdot \frac{\mathsf{q}}{\mathsf{R}^{2}} \propto \frac{1}{\mathsf{R}^{2}} \qquad (\mathsf{q} = \mathsf{constant})$ Radius is halved. Therefore, electric field will become 4 times or 4E Further,  $V = \frac{1}{4\pi \epsilon_0} \cdot \frac{q}{R} \propto \frac{1}{R}$  (q = constant) Radius is halved, so potential will become two times or 2 V. 23. (2)  $\tan \theta = \frac{y}{x} = \frac{2\sqrt{2}}{2} = \sqrt{2} \text{ or } \cot \theta = \frac{1}{\sqrt{2}}$   $\tan \phi = \frac{\tan \theta}{2} = \frac{\sqrt{2}}{2}$  $=\frac{1}{\sqrt{2}}=\cot\theta\qquad\qquad\left(\tan\phi=\frac{\mathsf{E}_{\theta}}{\mathsf{E}_{r}}=\frac{\tan\theta}{2}\right)$  $\therefore \phi = 90^{\circ} - \theta$ 



## [7]

MEAITS 2018\_Unit Test-2 (NEET\_Sol.)\_26-08-17 24. (1) In such situation potential difference depends only on the charge on inner sphere. Since, charge on inner sphere is unchanged. Therefore, potential difference V will remains unchanged. 25. (2) 26. (2) 27. (2) 28. (1) If t<sub>1</sub> and 2t<sub>2</sub> are the time taken by particle to cover first and second half distance, respectively  $t_1 = \frac{x/2}{3} = \frac{x}{6}$  $x_1 = 4.5t_2$  and  $x_2 = 7.5t_2$ So,  $X_1 + X_2 = \frac{x}{2}$  $\Rightarrow 4.5t_2 + 7.5t_2 = \frac{x}{2} \Rightarrow t_2 = \frac{x}{24}$ Total time,  $t = t_1 + 2t_2 = \frac{x}{6} + \frac{x}{12} = \frac{x}{4}$ So, average speed = 4 ms<sup>-1</sup> 29. (3)  $y = a + bt + ct^2 - dt^4$  $\therefore v = \frac{dy}{dt} = b + 2ct - 4dt^3$ and  $a = \frac{dv}{dt} = 2c - 12dt^2$ Hence, at t = 0,  $v_{initial} = b$  and  $a_{initial} = 2c$ 30. (3)  $v = At + Bt^2 \Rightarrow \frac{dx}{dt} = At + Bt^2 \Rightarrow \int_0^x dx = \int_1^2 (At + Bt^2) dt$  $\Rightarrow x = \frac{A}{2}(2^2 - 1^2) + \frac{B}{3}(2^3 - 1^3) = \frac{3A}{2} + \frac{7B}{3}$ 31. (3) Velocity of particle  $v = \frac{dx}{dt} = 4 - 2t$ When velocity is zero,  $0 = 4 - 2t \Longrightarrow t = 2 \sec t$  $X = 4(2) - (2^2) = 4m$ 32. (2) We know that  $S_{nth} = u + \frac{1}{2}a(2n-1)$  $S_{3rd} = 0 + \frac{1}{2}a(2 \times 3 - 1) = \frac{5}{2}a$  (For n = 3s)  $S_{4th} = 0 + \frac{1}{2}a(2 \times 4 - 1) = \frac{7}{2}a(for n = 4s)$ 



$$= \frac{S_{ath} - S_{atd}}{S_{atd}} \times 100 = \frac{\frac{7}{2a} - \frac{5}{2a}}{\frac{5}{2a}} \times 100$$

$$= \frac{2a}{\frac{2}{5a}} \times 100 = 2 \times 20 = 40\%$$
33. (1)  
Velocity of the particle is given as  
 $u = \sqrt{180 - 16x} \text{ m/s}$   
Squaring on both sides  
 $v^2 = 180 - 16x$   
Now compare with  
 $v^2 = u^2 + 2as$   
 $\Rightarrow 2a = -16$   
 $\Rightarrow a = -8m/s^2$   
34. (3)  
Stopping distance,  $S = \frac{u^2}{2a}$   
 $\Rightarrow \frac{S_2}{S_1} = \left(\frac{u_2}{u_1}\right)^2 \Rightarrow \frac{S_2}{6} = \left(\frac{100}{50}\right)^2 = 4$   
 $\Rightarrow S_2 = 24m$   
35. (1)  
Let the initial velocity = u and acceleration = a  
in 1st case,  $S_1 = ut_1 + \frac{1}{2}at_1^2$   
 $200 = 2u + 2a$  (:  $t_1 = 2s$ )  
 $100 = u + a$  .....(1)  
In 2nd case,  $S_2 = ut_2 + \frac{1}{2}at_2^2$   
 $420 = 6u + 18a$  (i  $t_2 = 2 + 4 = 6s$ )  
 $3a + u = 70$  .....(ii)  
Solving Eas. (i) and (ii) we get  
 $a = -15ms^{-a}an u = 115 ms^{-1}$   
 $\therefore v = u + at = 115 - 15 \times 7 = 10ms^{-1}$   
(5)  
Distance travelled in fifth second for first body = distance travelled in 3rd second for second body.  
 $S_6 = S_3$   
 $S_{ph}^{a} = u + \frac{(2n - 1)a}{2}$ 

$$u_{th} = U + \frac{(211-1)a}{2}$$



[ 0 ]

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5

$$\begin{split} S_{n} &= 0 + \frac{9}{2}a_{1} \\ S_{3} &= 0 + \frac{5}{2}a_{2} \\ \frac{9}{2}a_{1} &= \frac{5}{2}a_{2} \Rightarrow \frac{a_{1}}{a_{2}} &= \frac{5}{9} \\ \end{split}$$
37. (1)  
Since, body starts from rest  $u = 0$ , Let t, be time when body accelerates and t, when it decelerates.  
 $\therefore t = t_{1} + t_{2} \Rightarrow t_{2} = t - t_{1} \qquad \dots \dots (1)$   
When car finally comes to rest,  $v = 0$   
 $\therefore 0 = v - b(t - t_{1}) \qquad \dots \dots (1)$   
From Equestion (1) and (1), we get  
 $t_{1} &= \frac{b}{(a + b)}t$  and  $v = \frac{ab}{(a + b)}t$   
38. (4)  
By the definition, the slope of displacement time graph is velocity.  
 $i.e., v = tan 0$   
 $\therefore \frac{v_{1}}{v_{1}} = \frac{tan 30^{\circ}}{tan 4v_{2}} \Rightarrow \frac{v_{1}}{v_{2}} = \frac{1}{\sqrt{3}}$   
39. (3)  
Initial relative velocity =  $v_{1} - v_{2}$ . Find relative velocity = 0  
From  
 $v^{2} = u^{2} - 2as \Rightarrow 0 = (v_{1} - v_{2})^{2} - 2 \times a \times s$   
 $\Rightarrow s = \frac{(v_{1} - v_{2})^{2}}{2a}$   
If the distance between two cars is 's' then collision will take place. to avoid collision  $d > s$   
 $\therefore d > \frac{(v_{1} - v_{2})^{2}}{2a}$   
Where  $d =$  actual initial distance between two cars.  
40. (1)  
Given line have positive intercept but negative slope. So its equation can be written as  
 $v = -mx + v_{0} \qquad \dots (1)$   
[where  $m = tan \theta = \frac{v_{0}}{3}$ ]  
By differentiating with respect to time we get  
 $\frac{dv}{dt} = -m\frac{dx}{dt} = -mv$   
Now substituting the value of v form eq. (i) we get  
 $\frac{dv}{dt} = -m(-mx + v_{0}) = m^{2}x - mv_{0} \therefore a = m^{2}x - mv_{0}$   
i.e., the graph between a and x should have positive slope but negative intercept on a - axis.



| [ 10 ]        | MEAITS 2018_Unit Test-2 (NEET_Sol.)_26-08-17                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.           |                                                                                                                                                |
|               | Let the height of tower bein and the body takes time h to reach the ground when it falls freely.                                               |
|               | $\therefore h = \frac{1}{2}gn^2 \qquad \dots(i)$                                                                                               |
|               | In the last second. i.e., in nth second the body travels 0.36h. In $ t-1 $ sec, it travels.<br>1h – 0.36h = 0.64 h                             |
|               | From Equation (i) $0.64h = \frac{1}{2}g(n-1)^2$ (ii)                                                                                           |
|               | $\frac{0.64}{1} = \frac{(n-1)^2}{n^2} \implies \frac{8}{10} = \frac{n-1}{n}$                                                                   |
|               | $\Rightarrow$ 8n = 10n - 10                                                                                                                    |
|               | $\Rightarrow$ n = 5                                                                                                                            |
|               | From Equation (i) $h = \frac{1}{2} \times 9.8 \times 25$                                                                                       |
|               | $h = 12.5 \times 9.8 = 122.5 = 123 \text{ m}$                                                                                                  |
| 42.           | (3)<br>Since, direction of v is annosite to the distance of a and h, so from equation of motion                                                |
|               | $1_{ab}$ $1_{ab}$ $2_{ab}$ $2_{ab}$ $2_{ab}$ $2_{ab}$ $2_{ab}$                                                                                 |
|               | $n = -vt + \frac{-gt}{2} \implies gt' - 2vt - 2n = 0$                                                                                          |
| $\Rightarrow$ | $t = \frac{2\nu \pm \sqrt{4\nu^2 + 8gh}}{2} \Rightarrow t = \frac{\nu}{1 + \frac{\sqrt{1 + 2gh}}{2}}$                                          |
| 12            | $2g \qquad g \qquad v^2 $                                                                                                                      |
| 43.           | ( <b>4</b> )                                                                                                                                   |
|               | Total time of flight $T = t_1 + t_2 = \frac{2u}{a}$                                                                                            |
| Ī             | $\Rightarrow u = \frac{g(t_1 + t_2)}{2}$                                                                                                       |
| 44.           | (2)                                                                                                                                            |
|               | Taking downward motion of the first stone from A to ground, we have                                                                            |
|               | $h = -ut_1 + \frac{1}{2}gt_1^2$ (i)                                                                                                            |
|               | Taking downward motion of second stone from a to ground, we have                                                                               |
|               | $h = ut_2 + \frac{1}{2}gt_2^2$ (ii)                                                                                                            |
|               | Third stone $h = \frac{1}{-}qt_2^2$ (iii)                                                                                                      |
|               | $2^{3^{3}}$ Multiplying Equation (i) by t <sub>a</sub> and Equation (ii) by t <sub>a</sub> and adding, we get                                  |
| Ī             | $h(t_1 + t_2) = \frac{1}{2}gt_1t_2(t_1 + t_2)$                                                                                                 |
|               |                                                                                                                                                |
|               | $\rightarrow 2$ $\Pi - \frac{1}{2} g_{1} \iota_{2}$ (IV)<br>From Equation (iii) and (iv) we get                                                |
|               | $t^2 - tt$ or $t = \sqrt{tt} - \sqrt{9 \times 4} - 6$                                                                                          |
| 45.           | $r_3 = r_1 r_2$ or $r_3 = \sqrt{r_1 r_2} = \sqrt{2} \times 4 = 0.5$ (1)                                                                        |
|               | Let $v_{PG}$ = velocity of police w.r.t. ground                                                                                                |
| Ment          | Mentors Eduserv: Plot No136/137, Parus Lok Complex, Boring Road Crossing,<br>Patna-1, Ph. No. : 0612-3223681/2   7544015993/6/7   7070999604/5 |



Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5



MEAITS 2018\_Unit Test-2 (NEET\_Sol.)\_26-08-17 [12] 60. (3) In polar form it is unstable due to anti aromatic behaviours 61. (1) 70% by mass 70g  $H_3PO_4 \rightarrow 100g$  solution / sample  $V = \frac{w}{d} = \frac{100}{1.54}; M = \frac{70 \times 1000}{98 \times 100 / 1.54} = 11 M$ 62. (2) KMnO<sub>4</sub> oxalic acid  $\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2} \Longrightarrow \frac{20 \times 0.1}{2} = \frac{M_2V_2}{5} \Longrightarrow M_2V_2 = 5$ 63. (1)  $N_2H_4 \rightarrow (Y) + 10e$ ·· Y contains all N-atoms.  $\therefore$  N<sub>2</sub><sup>2-</sup> $\rightarrow$  (2N)<sup>a</sup> +10e  $\therefore$  2a + 2×(2) = 10 ∴ a = +3 64. (2)  $\underset{_{+4}}{SO_2} + 2\underset{_{-2}}{H_2}S \rightarrow 3S + 2\underset{_{-2}}{H_2}O$ Eq. mass  $=\frac{M}{4}=\frac{64}{4}=16;$ Twice 16×2=32 65. (1) 1.12 litre H<sub>2</sub> displace by 1.2g metal ÷ 22.4 litre  $H_2^2$  displace by = 24g metal 66. (1) The ion which is not affected during the course of reaction is known as spectator ion. 67. (3)  $P + NaOH \rightarrow PH_3 + NaH_2PO_2$ In above reaction, the the ox. no. of P increases from zero to +1 in NaH<sub>2</sub>PO<sub>2</sub> and decrease zero to -3 in PH<sub>2</sub>. Thus P is oxidised as well as reduced and it is redox reaction. 68. (1)  $\overset{0}{P}$ + NaOH  $\rightarrow \overset{-3}{PH_3}$ + NaH<sub>2</sub>  $\overset{+1}{PO_2}$  $\begin{array}{c} Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O \\ \hline Cr_2O_7^{2^-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O \\ \hline \vdots & 3 \text{ mole of } Sn^{2+} \text{ reduced = 1 mole of } Cr_2O_7^{2-} \end{array}$ 1 mole of Sn<sup>2+</sup> reduced =  $\frac{1}{3}$  mole of Cr<sub>2</sub>O<sub>4</sub><sup>2-</sup> *.*.. 69. (2)  $\mathring{S}_2 O_4^{2-}$ : 2a+4×(-2) = -2 a = +3  $\overset{a}{S}O_{3}^{2-}: a+3\times(-2)=-2$ 



a = +4

[ 13 ]

*.*..  $S_2 O_6^{2-}$ : 2a + 6 × (-2) = -2 a = +5.:.  $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ ÷. 70. (2)  $\frac{\text{Molecular}}{2}, \text{Because in KIO}_3 \text{ effective oxidation number is 6.}$ 71. (3)  $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O_5 + 5O_4 + 2MnSO_4 + 2MnSO_5 + 5O_4 + 2MnSO_4 + 2MnSO_4 + 2MnSO_5 + 2MnSO_5 + 2MnSO_4 + 2MnSO_5 +$  $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O_5 + 5O$  $\overline{2\mathsf{KMnO}_4+3\mathsf{H}_2\mathsf{SO}_4+5\mathsf{H}_2\mathsf{O}_2\rightarrow\mathsf{K}_2\mathsf{SO}_4+2\mathsf{MnSO}_4+8\mathsf{H}_2\mathsf{O}+5\mathsf{O}_2}$ 2mole of KMnO<sub>4</sub> decolorised by 5 mole of H<sub>2</sub>O<sub>4</sub> ... .:. 72. 1 mole of KMnO<sup>4</sup><sub>4</sub> decolorised by 5/2 mole of H<sup>2</sup><sub>2</sub>O<sub>2</sub> (3)  $KMnO_4 + SO_3^{^{+7}} \rightarrow Mn^{^{2+}} + SO_4^{^{+6}}$ n = 5 n = 25 mole of SO $_3^{2-}$  react with 2 mole KMnO $_4$  1 mole of SO $_3^{2-}$  react with 2/5 mole KMnO $_4$ . ÷ 73. (3) IO<sub>3</sub><sup>-</sup> :  $a+3 \times (-2) = -1$ *.*.. a = +5  $a + 4 \times (-2) = -1$ IO<sub>4</sub> : *.*.. a = +7 κ̈́ι: 1 + a = 0÷ a = -1  $I_2^a$ : 2a = 0 a = 0*.*.. 74. (4)  $8KMnO_4 + 3NH_3 \rightarrow 3KNO_3 + 8MnO_2 + 5KOH + 2H_2O_3$ 75. (2) In NH<sub>2</sub>OH ox. state of N=-1 In N<sub>2</sub>O ox. state of N=+1 Change in ox. state = 2 *.*.. Eq. mass = M/276. (3) :O:(-1)  $NO_3^{\ominus} O - N = O$ (-1) (+1) (0) 78. (2) 77. (3) 79. (4) Among given non-metals, O-atom has high electron affinity and strong ionic bond is formed between AI and Oatom. 80. (4) 81. (3) 82. (4) 83. (3) (3) (2) 84. 85. (3) 86. (2) 87. 88. (4) (1) 89. 90. (4) Lattice energy released in case of MgO is maximum giving highest contribution to ionic nature of ionic bond.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No.: 0612-3223681/2 | 7544015993/6/7 | 7070999604/5



| [ 14 ] | MEAITS 2018_Unit Test-2 (NEET_Sol.)_26-08-17                                                  |
|--------|-----------------------------------------------------------------------------------------------|
|        | BOTANY                                                                                        |
| 91.    | (4)                                                                                           |
|        | Cell growth results in low metabolic activity & low nucleocyto-plasmic ratio so cell divides. |
| 92.    | (2) 93. (1)                                                                                   |
| 94.    | (4)                                                                                           |
|        | G <sub>1</sub> ,S,G <sub>2</sub> phases are part of interphase                                |
| 95.    | (4)                                                                                           |
|        | M-Phase is the phase of actual cell division                                                  |
| 96.    | (2)                                                                                           |
|        | Interphase comes between 2-successive M-Phases.                                               |
| 97.    | (3)                                                                                           |
| 98.    | (1)                                                                                           |
|        | About 5% of total time is consumed during M-Phases                                            |
| 99.    | (1) 100. (3)                                                                                  |
| 101.   | (2)                                                                                           |
| 4.4.5  | Inhibited synthesis of tubulin will inhibit cell division at Metaphase                        |
| 102.   | (3)                                                                                           |
| 103.   | (1)<br>C. Dhana comes between M. Dhana & The S. Dhana                                         |
| 104    | 01-Finase comes between wi-Finase & the S-Finase.                                             |
| 104.   | (2)                                                                                           |
| 105.   | ()<br>G_Phase does not include Genomic Duplication                                            |
| 106    | (3) 107 (2)                                                                                   |
| 100.   | (3) 107. (2)                                                                                  |
| 100.   | V=/<br>During G -Phase cell cannot divide                                                     |
| 109.   | (4) 110. (1) 111. (1)                                                                         |
| 112.   | (2)                                                                                           |
|        | Prophase is marked by chromosomal condensation                                                |
| 113.   | (1)                                                                                           |
| 114.   | (1)                                                                                           |
|        | Figure belongs to Metaphase                                                                   |
| 115.   | (4) 116. (2) 117. (2) 118. (4)                                                                |
| 119.   | (2) 120. (1) 121. (3)                                                                         |
| 122.   | (1)                                                                                           |
|        | Syncytium arise due to Nuclear Div. without cytoplasmic Div.                                  |
| 123.   | (1) 124. (2) 125. (3) 126. (2)                                                                |
| 127.   | (2) 128. (3) 129. (3) 130. (4)                                                                |
| 131.   | (2) Anaphase- I does not involve centromeric division.                                        |
| 132.   | (3) 133. (1) 134. (2) 135. (4)                                                                |
|        | ZOOLOGY                                                                                       |
| 136.   | (4)                                                                                           |
|        | Raffinose = glucose + fructose + galactose                                                    |
|        | Sucrose = glucose + fructose                                                                  |
|        | Lactose = glucose +                                                                           |
|        | alactose T Fructose is not                                                                    |
|        | produced                                                                                      |
|        | → by their mixture                                                                            |
|        | Maltose = glucose + glucose                                                                   |
|        |                                                                                               |
| 3      |                                                                                               |



| MEAITS | 2018_Unit Test-2 (NEET_Sol.)_26-08-17 [15]                                                                                                            |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137.   | (3)                                                                                                                                                   |
|        | Cellulose is a secondary metabolite.                                                                                                                  |
| 138.   | (4)                                                                                                                                                   |
|        | Glucose has aldehyde group as functional group which reduces Cu <sup>++</sup> to Cu <sup>+</sup> . So, it is a reducing sugar.                        |
| 139.   | (4)                                                                                                                                                   |
|        | Pentose and hexoses both show open chains as well as ring forms.                                                                                      |
| 140.   | (1)                                                                                                                                                   |
|        | Oligosaccharides are made up to 2 to 9 molecules of mono saccharides.                                                                                 |
| 141.   | (1)                                                                                                                                                   |
|        | Sucrose is the non-reducing sugar.                                                                                                                    |
| 142.   | (1)                                                                                                                                                   |
|        | Fructose is the source of energy found in human's semen. It is secreted by seminal vesicle.                                                           |
| 143.   | (1)                                                                                                                                                   |
|        | Dental carries are prevented by Fluorine.                                                                                                             |
| 144.   | (2)                                                                                                                                                   |
|        | Raffinose is a trisaccharide carbohydrate.                                                                                                            |
| 145.   | (2)                                                                                                                                                   |
|        | Agar is mucopolysaccharide                                                                                                                            |
| 146.   | (4)                                                                                                                                                   |
| 147.   | (1)                                                                                                                                                   |
|        | Agar is mucopolysaccharide.                                                                                                                           |
| 148.   | (1)                                                                                                                                                   |
|        | Linoleic acid has two double bonds, linolenic acid has three double bonds. Arachidonic acid has four double bonds. Palmitic acid has no double bonds. |
| 149.   | (1)                                                                                                                                                   |
|        | Wax-D - Bacteria wax                                                                                                                                  |
|        | Cutin - Lipid occurs in the aerial epidermal cell walls.                                                                                              |
|        | Lanolin - Protective water insoluble coating on animal tar                                                                                            |
| 450    | Cerumen - ear wax                                                                                                                                     |
| 150.   | (1)                                                                                                                                                   |
| 151.   | (1)<br>Acidia amina acida                                                                                                                             |
|        | (i) Appartia acid/constate                                                                                                                            |
|        | (i) Aspanic acid                                                                                                                                      |
|        | (ii) Glutaline aciu                                                                                                                                   |
|        |                                                                                                                                                       |
|        |                                                                                                                                                       |
| 152    | (1)                                                                                                                                                   |
| 153.   | (4)                                                                                                                                                   |
|        | Melatonin is synthesized from amino acid tryntonhan                                                                                                   |
| 154    |                                                                                                                                                       |
| 134.   | (3)<br>Primary structure of proteins are linear polypentide chains in which acids are held together with pentide                                      |
|        | bonds.                                                                                                                                                |
| 155.   | (4)                                                                                                                                                   |
| 156.   | (3)                                                                                                                                                   |
|        | Nicotinamide and riboflavin are nucleotides of vitamins which do not participates in the formation of nucleic acids.                                  |
|        |                                                                                                                                                       |
|        |                                                                                                                                                       |



| [16] | MEAITS 2018_Unit Test-2 (NEET_Sol.)_26-08-17                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 157. | (4)                                                                                                                                                                 |
|      | A = G and C = T are not constant.                                                                                                                                   |
|      | but $A = T$ and $G = C$ because they show pairing.                                                                                                                  |
| 158. | (4)                                                                                                                                                                 |
|      | RNA - Sugar - Ribose, pyrimidine uracil                                                                                                                             |
|      | DNA - Sugar - Dexoyribose, pyrimidine - thymine in place of uracil as that in RNA                                                                                   |
|      | A.G. (Purines), pyrimidine (cytosine) and phosphate are same in DNA and RNA.                                                                                        |
| 159. | (1)                                                                                                                                                                 |
|      | m-RNA - 1 - 5%                                                                                                                                                      |
|      | r-RNA - 80% - 85%                                                                                                                                                   |
|      | t-RNA - 10 - 15%                                                                                                                                                    |
| 160. | (3)                                                                                                                                                                 |
| 161. | (1)                                                                                                                                                                 |
|      | Z-form DNA = 12 bp per turn                                                                                                                                         |
|      | A form DNA = 11 bp per turn                                                                                                                                         |
|      | B DNA = 10 bp per turn                                                                                                                                              |
|      | C DNA = 9 bp per turn                                                                                                                                               |
|      | D DNA = 8 bp per turn                                                                                                                                               |
|      | E DNA = 7.5 bp per turn                                                                                                                                             |
| 162. | (3)                                                                                                                                                                 |
| 163. | (3)<br>Dath strends of DNA are hold together with the hole of the region is between Nickson enviro                                                                  |
| 404  | Both strands of DNA are held together with the help of H-bonding in between N-base pairs.                                                                           |
| 164. | (3)<br>The width between the two back here of DNA is constant due to U banding of a nurine with an other                                                            |
|      | pyrimidine. Purine is a double ring structure while a pyrimidine is a single ring structure.                                                                        |
| 165. | (1)                                                                                                                                                                 |
| 166. | (1)                                                                                                                                                                 |
|      | Sulpha drugs (e.g., salphanilamide) inhibit the synthesis of folic acid in bacteria by competing with P-<br>amino benzoic acid (PABA) for the active site of enzyme |
|      | ATP inhibits the activity of phosphofructosekinase and isoleucine inhibits the activity of theonine                                                                 |
|      | deaminase by allosteric modulation.                                                                                                                                 |
| 167. | (4) 168. (2)                                                                                                                                                        |
| 169. | (1)                                                                                                                                                                 |
|      | $\alpha$ -amylase of wheat endosperm has 16 isoenzymes lactic acid dehydrogenase has 5 isoenzymes.<br>Alcohol dehydrogenase has 4 isoenzymes                        |
| 170. | (4)                                                                                                                                                                 |
| -    | In a non-competitive inhibition $K_m$ value is constant or remain same, while $V_{max}$ decreases by adding                                                         |
| 474  | Inhibitor.                                                                                                                                                          |
| 1/1. |                                                                                                                                                                     |
| 172. | (4)<br>The functioning of establists is not controlled by regulators molecules                                                                                      |
| 173  | (A) 174 (1) 175 (A) 176 (2)                                                                                                                                         |
| 177. | (2) 178. $(1)$ 179. $(3)$ 180. $(4)$                                                                                                                                |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |

