SOLUTIONS

Mentors Eduserv

All India Test Series 2018 Unit Test-1
 AIPMT PATTERN Test Date: 12-08-2017

PHYSICS

1. (4)

Force $=$ mass \times acceleration
\Rightarrow [Mass]
$=\left[\frac{\text { force }}{\text { acceleration }}\right]=\left[\frac{\text { force }}{\text { velocity } / \text { time }}\right]=\left[\mathrm{FV}^{-1} \mathrm{~T}\right]$
2. (2)

Let surface tension
$\mathrm{s}=\mathrm{E}^{\mathrm{a}} \mathrm{V}^{\mathrm{b}} \mathrm{T}^{\mathrm{c}}$
$\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}}=\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right)^{a}\left(\frac{\mathrm{~L}}{\mathrm{~T}}\right)^{\mathrm{b}}(\mathrm{T})^{\mathrm{c}}$
Equating the dimension of LHS and RHS
$\mathrm{ML}^{0} \mathrm{~T}^{-2}=\mathrm{M}^{0} \mathrm{~L}^{2 a+b} \mathrm{~T}^{-2 \mathrm{a}-\mathrm{b}+\mathrm{c}}$
$\Rightarrow \mathrm{a}=1,2 \mathrm{a}+\mathrm{b}=0,-2 \mathrm{a}-\mathrm{b}+\mathrm{c}=-2$
$\Rightarrow a=1, b=-2, c=-2$
Hence, the dimensions of surface tension are $\left[\mathrm{E} \mathrm{V}^{-2} \mathrm{~T}^{-2}\right]$
3. (1)

According to question,
$V(x)=b x^{-2 n}$
So, $\frac{d v}{d x}=-2 n b x^{-2 n-1}$
Acceleration of the particle as function of x,
$a=v \frac{d v}{d x}=b x^{-2 n}\left\{b(-2 n) x^{-2 n-1}\right\}=-2 n b^{2} x^{-4 n-1}$
4. (2)
$y=\frac{F I}{x A}=\frac{1 \times 9.8 \times 2}{\left(0.8 \times 10^{-3}\right) \times \pi\left(\frac{0.4 \times 10^{-3}}{2}\right)^{2}}$
$=1.94 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
$\frac{\Delta Y}{Y}=\frac{\Delta x}{x}+\frac{\Delta \mathrm{A}}{\mathrm{A}}=\frac{\Delta \mathrm{x}}{\mathrm{x}}+2 \frac{\Delta \mathrm{~d}}{\mathrm{~d}}$
$=\frac{0.05}{0.8}+\frac{2(0.01)}{0.4}=0.1125$
$\Rightarrow \Delta Y=(0.1125) Y$
$=0.1125 \times 1.94 \times 10^{11}$
$=0.2185 \times 10^{11}=0.2 \times 10^{11}$
5. (4)

$$
\frac{\Delta \mathrm{g}}{\mathrm{~g}}=\frac{\Delta \mathrm{l}}{\mathrm{l}}+2 \frac{\Delta \mathrm{~T}}{\mathrm{nT}}
$$

ΔT is least and n is maximum, hence error will be least in this case
6. (3)

Let $\mathrm{v}^{\mathrm{x}}=\mathrm{kg}^{\mathrm{y}} \lambda^{\mathrm{z}} \rho^{\delta}$. Now by substituting the dimensinos of each quantities and equating the powers of M , L , and T , we get $\delta=0$ and $\mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=1$
7. (4)

$$
\begin{aligned}
& \rho=\frac{m}{v}=\frac{m}{\pi r^{2} l} \Rightarrow \frac{\Delta \rho}{\rho}=\frac{\Delta m}{m}+2 \frac{\Delta r}{r}+\frac{\Delta l}{l} \\
& \Rightarrow \frac{\Delta \rho}{\rho} \times 100=\left(\frac{0.003}{0.3}+2 \times \frac{0.005}{0.5}+\frac{0.06}{6}\right) \times 100 \\
& =4 \%
\end{aligned}
$$

8. (3)

Volume of sphere $(V)=\frac{4}{3} \pi r^{2} \%$ error in volume
$=3 \times \frac{\Delta r}{r} \times 100=\left(3 \times \frac{0.1}{5.3}\right) \times 100$
9. (3)

From the principle of dimensional homogenity

$$
[\mathrm{v}]=[\mathrm{at}] \Rightarrow\left[\mathrm{LT}^{-2}\right]
$$

Similarly, [b] = [L] and [c] = [T]
10. (1)

By the principle of dimensional homogenity

$$
\begin{aligned}
& {[\mathrm{P}]=\left[\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right] \Rightarrow[\mathrm{a}]=[\mathrm{P}] \times\left[\mathrm{V}^{2}\right]} \\
& =\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{6}\right]=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

11. (2)

$$
\begin{aligned}
& \ell_{\text {effective }}=\ell=\ell_{0}+r \\
& \Rightarrow \quad \ell=101.4+\frac{2.64}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \ell=101.4+1.32 \\
\ell & \ell=102.72 \mathrm{~cm}
\end{array}
$$

Since, in addition the least number of decimal figures which occur among the added quantities is to be taken. Here the number of least decimal figure in the length is 1 , hence

$$
\ell=102.7 \mathrm{~cm}
$$

12. (4)

$$
\begin{aligned}
& R_{S}=R_{1}+R_{2}=16 \Omega \\
& R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{R_{1} R_{2}}{R_{S}}=3 \Omega \\
& \Delta R_{S}=\Delta R_{1}+\Delta R_{2}=1 \Omega \\
& \Rightarrow \frac{\Delta R_{S}}{R_{S}} \times 100=\frac{1}{16} \times 100 \% \\
& \Rightarrow \frac{\Delta R_{S}}{R_{S}} \times 100=6.25 \% \\
& \Rightarrow R_{S}=16 \Omega \pm 6.25 \%
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& R_{P}=\frac{R_{1} R_{2}}{R_{S}} \\
& \Rightarrow \frac{\Delta R_{P}}{R_{P}} \times \frac{\Delta R_{1}}{R_{1}}+\frac{\Delta R_{2}}{R_{2}}+\frac{\Delta R_{S}}{R_{S}} \\
& \Rightarrow \frac{\Delta R_{P}}{R_{P}}=\frac{0.5}{4}+\frac{0.5}{12}+\frac{1}{16} \\
& \Rightarrow \frac{\Delta R_{P}}{R_{P}}=0.23 \Rightarrow \frac{\Delta R_{P}}{R_{P}} \times 100=23 \% \\
& \Rightarrow R_{P}=3 \Omega \pm 23 \%
\end{aligned}
$$

13. (1)
14. (1)
$\mathrm{R}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{I}_{0}}=\frac{8}{2}=4 \Omega$
$\frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{\Delta \mathrm{V}}{\mathrm{V}}+\frac{\Delta \mathrm{l}}{\mathrm{V}}$
$\Rightarrow \frac{\Delta R}{R}=\frac{0.5}{8}+\frac{0.2}{2} \Rightarrow \frac{\Delta R}{R}=0.1625$
$\Rightarrow R=4 \Omega \pm 16.25 \%$
15. (1)

Flux $=\phi=\mathrm{BA}$
$\Rightarrow \phi=\left(\frac{\mathrm{F}}{\mathrm{qv}}\right) \mathrm{A} \Rightarrow[\phi]=\frac{\mathrm{MLT}^{-2}}{\mathrm{QLT}^{-1}} \mathrm{~L}^{2}$
$\Rightarrow[\phi]=\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{Q}^{-1}$
16. (3)

Here, $f=f_{0}\left(1-\frac{t}{T}\right)$ or, $\frac{d v}{d t}=f_{0}\left(1-\frac{t}{T}\right)$
or, $d v=f_{0}\left(1-\frac{t}{T}\right) d t$
$\therefore v=\int \mathrm{dv}=\int\left[\mathrm{f}_{0}\left(1-\frac{\mathrm{t}}{\mathrm{T}}\right)\right] \mathrm{dt}$
or, $v=f_{0}\left(t-\frac{t^{2}}{2 T}\right)+C$
where C is the constant of integration.
At $t=0, v=0$
$\therefore 0=\mathrm{f}_{0}\left(0-\frac{0}{2 \mathrm{~T}}\right)+\mathrm{C} \Rightarrow \mathrm{C}=0$
$\therefore v=\mathrm{f}_{0}\left(\mathrm{t}-\frac{\mathrm{t}^{2}}{2 \mathrm{~T}}\right)$
If $\mathrm{f}=0$, then
$0=f_{0}\left(1-\frac{t}{T}\right) \Rightarrow t=T$
Hence, particle's velocity in the time interval $t=0$ and $t=T$ is given by
$v_{x}=\int_{t=0}^{t=T} d v=\int_{t=0}^{T}\left[f_{0}\left(1-\frac{t}{T}\right)\right] d t$
$=f_{0}\left[\left(t-\frac{t^{2}}{2 T}\right)\right]_{0}^{T}=f_{0}\left(T-\frac{T^{2}}{2 T}\right)=f_{0}\left(T-\frac{T}{2}\right)$
$=\frac{1}{2} f_{0} T$
17. (2)
$s=a t^{2}-b t^{3}$
$v=\frac{d s}{d t}=2 a t-3 b t^{2}$
$a=\frac{d v}{d t}=2 a-6 b t$
$2 a-6 b t=0 \Rightarrow t=\frac{a}{3 b}$
18. (1)

Speed $v=\frac{d x}{d t}=\frac{d}{d t}\left(9 t^{2}-t^{3}\right)=18 t-3 t^{2}$
$\frac{d v}{d t}=0 \Rightarrow 18-6 t=0 \Rightarrow t=3$
$\Rightarrow x_{\max }=81-27=54$
19. (2)
$x=40+12 t-t^{3} \Rightarrow v=\frac{d x}{d t}=12-3 t^{2}$
$v=0 ; t=\sqrt{\frac{12}{3}}=2 \sec$
So, after 2 seconds velocity becomes zero
Value of x in 2 secs $=40+12 \times 2-2^{3}$

$$
=40+24-8=56 \mathrm{~m}
$$

20. (3)

$$
\begin{aligned}
& \because \mathrm{t}=\sqrt{\mathrm{x}}+3 \\
& \Rightarrow \sqrt{\mathrm{x}}=\mathrm{t}-3 \Rightarrow \mathrm{x}=(\mathrm{t}-3)^{2} \\
& v=\frac{\mathrm{dx}}{\mathrm{dt}}=2(\mathrm{t}-3)=0 \Rightarrow \mathrm{t}=3 \\
& \therefore \mathrm{x}=(3-3)^{2} \Rightarrow \mathrm{x}=0
\end{aligned}
$$

21. (2)

Note that $(\vec{B} \times \vec{A}) \perp \vec{A}$. Hence their dot product is zero
22. (1)

The componets of 1 N and 2 N forces along $+x$ axis $=1 \cos 60^{\circ}+2 \sin 30^{\circ}$

$$
=1 \times \frac{1}{2}+2 \times \frac{1}{2}=\frac{1}{2}+1=\frac{3}{2}=1.5 \mathrm{~N}
$$

The component of 4 N force along -x axis

$$
=4 \sin 30^{\circ}=4 \times \frac{1}{2}=2 \mathrm{~N}
$$

Therefore, if a force of 0.5 N is applied along +x -axis, the resultant force along x -axis will become zero and the resultant force will be obtained only along y-axis.
23. (4)

$$
\begin{aligned}
& 3 t=\sqrt{3 x}+6 \\
& \Rightarrow \quad \sqrt{3 x}=(3 t-6) \\
& \Rightarrow \quad 3 x=(3 t-6)^{2} \Rightarrow x=3 t^{2}-12 t+12 \\
& \therefore \quad v=\frac{d x}{d t}=\frac{d}{d t}\left(3 t^{2}-12 t+12\right)=6 t-12
\end{aligned}
$$

If velocity $=0$, then $6 t-12=0 \Rightarrow t=2 s$
Hence, at $\mathrm{t}=2$

$$
x=3(2)^{2}-12(2)+12=0 m
$$

24. (1)

Differentiating time with respect to distance

$$
\begin{aligned}
& \frac{d t}{d x}=2 \alpha x+\beta \\
\Rightarrow & v=\frac{d x}{d t}=\frac{1}{2 \alpha x+\beta}
\end{aligned}
$$

So, acceleration $(\mathrm{a})=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{dv}}{\mathrm{dx}} \cdot \frac{\mathrm{dx}}{\mathrm{dt}}$

$$
=v \frac{d v}{d x}=\frac{-v \cdot 2 \alpha}{(2 \alpha x+\beta)^{2}}=-2 \alpha \cdot v \cdot v^{2}=-2 \alpha v^{3}
$$

25. (3)

$$
\begin{aligned}
& \int_{v_{1}}^{v_{2}} d v=\int_{t_{1}}^{t_{2}} a d t=\int_{t_{1}}^{t_{2}}(b t) d t \\
& \Rightarrow v_{2}-v_{1}=\left(\frac{b t^{2}}{2}\right)_{t_{1}}^{t_{2}} \\
& \Rightarrow v_{2}=v_{1}+\left(\frac{b t^{2}}{2}\right)_{0}^{t}=v_{0}+\frac{b t^{2}}{2} \\
& \Rightarrow S=\int v_{0} d t+\int \frac{b t^{2}}{2} d t=v_{0} t+\frac{1}{6} b t^{3}
\end{aligned}
$$

26. (2)

$$
\begin{aligned}
& \int_{6.25}^{0} \frac{d v}{\sqrt{v}}=-2.5 \int_{0}^{t} d t \Rightarrow|2 \sqrt{v}|_{6.25}^{0}=-2.5 t \\
& \Rightarrow 2 \sqrt{6.25}=2.5 t \Rightarrow t=2 \mathrm{~s}
\end{aligned}
$$

27. (2)

Note that the angle between two forces is 120° and not 60°.
$R^{2}=F^{2}+F^{2}+2 F^{2} \cos 120^{\circ}$
$=2 F^{2}+2 F^{2}\left(-\frac{1}{2}\right) F^{2}$
or $R=F$
28. (1)

$$
\begin{aligned}
& A_{1}=2, A_{2}=3,\left|\vec{A}_{1}+\vec{A}_{2}\right|=3 \\
& \Rightarrow\left|\vec{A}_{1}+\vec{A}_{2}\right|^{2}=9 \\
& \Rightarrow A_{1}^{2}+A_{2}^{2}+2 \vec{A}_{1} \cdot \vec{A}_{2}=9 \\
& \Rightarrow 2^{2}+3^{2}+2 \vec{A}_{1} \cdot \vec{A}_{2}=9 \Rightarrow \vec{A}_{1} \cdot \vec{A}_{2}=-2
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left(\overrightarrow{\mathrm{A}}_{1}+2 \overrightarrow{\mathrm{~A}}_{2}\right) \cdot\left(3 \overrightarrow{\mathrm{~A}}_{1}-4 \overrightarrow{\mathrm{~A}}_{2}\right)=3 \mathrm{~A}_{1}^{2}-8 \mathrm{~A}_{2}^{2}+2 \overrightarrow{\mathrm{~A}}_{1} \cdot \overrightarrow{\mathrm{~A}}_{2} \\
& \quad=3(2)^{2}-8(3)^{2}+2(-2)=-64
\end{aligned}
$$

29. (2)

Area of parallelogram : $|\vec{A} \times \vec{B}|$
$=A B / 2$ (given)
$\Rightarrow A B \sin \theta=A B / 2$

$\Rightarrow \sin \theta=1 / 2 \Rightarrow \theta=30^{\circ}$
30. (3)

Let the third side be
\vec{C}, then $|\vec{C}|=|\vec{A}+\vec{B}|$ or $|\vec{C}|=|\vec{A}+\vec{B}|$
31. (2)
$\cos \beta=\frac{R}{B}=\frac{1}{2} \Rightarrow \beta=60^{\circ}$
Angle between \vec{A} and $\vec{B}=90^{\circ}+\beta=150^{\circ}$
32. (4)

For the resultant of some vectors to be zero, they should form a closed figure taken in the same order.
33. (2)

Here the angle between two vectors of equal magnitude is 120 . So resultant has the same magnitude as either of the given vectors. Moreover, it is mid-way between the two vectors, i.e., it is along x-axis.
34. (1)
$\cos \theta=\frac{\mathrm{C}}{\mathrm{A}}=\frac{3}{5}$ or $\theta=\cos ^{-1}\left(\frac{3}{5}\right)$

35. (2)

Clearly, $\overrightarrow{\mathrm{B}}$ should be either in the second quadrant or the fourth quadrant. In none of the given options, we have $-\hat{i}$ term. So the second quadrant is ruled out. Also \vec{B} should make an angle of $90^{\circ}-\theta$ with the $x-$ axis. So, B should be
$\vec{B} \cos \left(90^{\circ}-\theta\right) \hat{i}-B \sin \left(90^{\circ}-\theta\right) \hat{j}=B \sin \theta \hat{i}-B \cos \theta \hat{j}$.
36. (3)
$\tan \beta=\frac{2}{3}$ or $\beta=\tan ^{-1}\left(\frac{2}{3}\right)$

37. (2)
$a^{2}+b^{2}+2 a b \cos \theta=a^{2}+b^{2}-2 a b \cos \theta$
or $4 \mathrm{ab} \cos \theta=0$
But $4 \mathrm{ab} \neq 0 \Rightarrow \cos \theta=0$ or $\theta=90^{\circ}$
Aliter
$(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are the diagonals of a parallelogram whose adjajcjent sides are \vec{a} and \vec{b}
Since $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, the two diagonals of a parallelogram are equal. So, think of rectangle. This leads to $\theta=90^{\circ}$
38. (1)

Let that vector be $\overrightarrow{\mathrm{C}}$. Then
$\overrightarrow{\mathrm{C}}=\mathrm{C} \hat{\mathrm{C}}=\mathrm{ba} \Rightarrow \overrightarrow{\mathrm{C}}=\frac{\mathrm{ba}}{\mathrm{a}}=\frac{5}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})$
39. (2)
$A C \leq A B+B C \Rightarrow|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

40. (3)
$\overrightarrow{O C}$ and $\overrightarrow{O A}$ are equal in magnitude and inclined to each other at an angle of 90°. So their resultant is $\sqrt{2} r$. It acts mid-way between $\overrightarrow{O C}$ and $\overrightarrow{O A}$, i.e., along $O B$

Now, both r and $\sqrt{2} r$ are along the same line and in the same direction

Resultant $=r+\sqrt{2 r}=r(1+\sqrt{2})$

41. (3)

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AF}}=\overrightarrow{\mathrm{AO}} \Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}-\overrightarrow{\mathrm{AF}} \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AO}} \cdot \overrightarrow{\mathrm{AD}}=2 \overrightarrow{\mathrm{AO}} \cdot \overrightarrow{\mathrm{AE}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{AF}}
\end{aligned}
$$

Now, $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}$

$=5 \overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AF}}=5 \overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{AO}}=6 \overrightarrow{\mathrm{AO}}$

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
42. (3)

$$
\begin{aligned}
& x+y=16 \\
& \text { Also, } y^{2}=8^{2}+x^{2}
\end{aligned}
$$

or $\quad y^{2}=64+(16-y)^{2}[\because x=16-y]$

or $\quad y^{2}=64+256+y^{2}-32 y$
or $32 y=320$ or $y=10 N$
$\therefore \quad x+10=16$ or $x=6 N$
43. (1)

$$
\begin{aligned}
& \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & p & q \\
5 & 7 & 3
\end{array}\right|=0 \\
& \text { or } \quad \hat{i}(3 p-7 q)+\hat{j}(5 q-6)+\hat{k}(14-5 p)=0 \\
& \qquad 3 p=7 q \cdot 5 q-6=0 \text { or } q=\frac{6}{5}
\end{aligned}
$$

44. (3)

$$
\angle \mathrm{ROQ}=\theta / 2, \angle \mathrm{RQO}=\theta / 2
$$

Hence, $\triangle \mathrm{OQR}$ is isosceles.

$$
\Rightarrow \mathrm{OR}=\mathrm{RQ} \Rightarrow \mathrm{~B}=\mathrm{A}
$$

Analytically :

$$
\begin{aligned}
& \tan (\theta / 2)=\frac{B \sin \theta}{A+B \cos \theta} \\
& \Rightarrow \frac{\sin (\theta / 2)}{\cos (\theta / 2)}=\frac{2 B \sin (\theta / 2) \cos (\theta / 2)}{A+B\left[2 \cos ^{2}(\theta / 2)-1\right]}
\end{aligned}
$$

$$
\Rightarrow \mathrm{A}+2 \mathrm{~B} \cos ^{2}(\theta / 2)-\mathrm{B}=2 \cos ^{2}(\theta / 2) \Rightarrow \mathrm{A}=\mathrm{B}
$$

45. (2)

For the resultant of two vectors to be zero, they should be equal and opposite.

CHEMISTRY

46. (1)

Here benzene is Parent chain cyclohexyl is substituent.
47. (2)
48. (3)

It is an ester
49. (4)

It is an ester
50. (4)

Here, ring is substituent.
51. (3)

Here OH is main functional group.
52. (1)

Here Parent chain includes acid \& $C=C$.
53. (3)

Here one NH_{2} is substituent.
54. (4)

3-Ethyl-hex-1-ene
55. (4)

Here acid is main functional group while ketone is junior.
56. (4)
57. (4)

Here OH is junior functional group while, ketone is senior.
58. (4)

It is anhydride having ester group as junior functional group
59. (4)

Here numbering starts from that carbon of $\mathrm{C}=\mathrm{C}$ where, OH is attached.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
60. (3)

Here $-\mathrm{OCH}_{3}$ is substituent.
61. (2)

100 g of coal contain 1 g of sulphur.
$2 \times 10^{6} \times 1000 \mathrm{~g}$ of coal contains
$\frac{2 \times 10^{6} \times 1000}{100}=2 \times 10^{7} \mathrm{~g}$ of sulphur
62. (4)

The reaction show that 2 moles of Al react with moles of O_{2} to produce 1 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
63. (2)
$\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
12 g of carbon gives 22.4 litres of CO_{2}
$\therefore \quad 11.2$ litres of CO_{2} is given by 6 g of C
The unburnt carbon is $10-6=4 \mathrm{~g}$
64. (1)
$\frac{2.65 \times 10^{22}}{6 \times 10^{23}}=0.0442 \mathrm{~mole}$
Mole ratio $=\frac{0.0887}{0.0442}: \frac{0.0442}{0.0442}: \frac{0.132}{0.0442}=2: 1: 3$
$\therefore \quad$ The empirical formula $=\mathrm{Na}_{2} \mathrm{CO}_{3}$
65. (4)
lodine present in 2.5 is 0.025 gm
167 g of KI contain 6×10^{23} iodine ions
0.025 g of $\mathrm{KI}-\mathrm{----}$?
$\frac{0.025 \times 6 \times 10^{23}}{167}=9.03 \times 10^{19}$
66. (2)
$\underset{1 \text { mole }}{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)}+\underset{2 \text { moles }}{2 \mathrm{KIO}_{3}} \rightarrow \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}+2 \mathrm{KNO}_{3}$
1 mole of KIO_{3} reacts with 0.5 mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. So 0.3 mol of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ left behind and 0.5 mol of $\mathrm{Pb}(\mathrm{IO})_{3}$ is formed. Hence the ratio is $5 / 3$.
67. (2)

$$
\underset{80}{2 \mathrm{NaOH}}+\underset{1 \text { mole }}{\mathrm{CO}_{2}} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

The no. of moles of CO_{2} in the mixture is 0.25 . Since it reacts with only 20 g of NaOH . So, the No . of moles of CO is 0.75 . It is converted into CO_{2} and requires 60 g of NaOH for the same.
68. (4)
$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
$84 \mathrm{~g}=1$ mole
$\therefore \quad 10 \mathrm{~g}$ of MgCO_{3} contain 8.4 g
Hence, percentage purity of $\mathrm{MgCO}_{3}=84$.
69. (2)

According to the equation, 60 g of urea react with 80 g of NaOH giving 34 g of ammonia. $\mathrm{So}, 6 \mathrm{~g}$ of urea can give 3.4 g of NH_{3}. But the percent yield is only 80%

$$
\frac{3.4 \times 80}{100}=2.72 \mathrm{~g}
$$

70. (4)

No. of carbon atoms in cortisone $=21 \mathrm{Wt}$. of 21 C atoms $=21 \times 12=252$
69.98 g of carbon in 100 g of cartisone 252 g of carbon contain in

$$
\frac{252 \times 100}{69.98}=360.1
$$

71. (1)
72. (1)
73. (1)

Initial no. of moles of CO_{2}

$$
=\frac{200 \times 10^{-3}}{44}=4.545 \times 10^{-3}
$$

74. (1)
$\underset{\substack{2 \text { moless } \\ 100 \mathrm{~mL}}}{2 \mathrm{PH}_{3}} \longrightarrow \underset{\substack{3 \text { moles } \\ 150 \mathrm{~mL}}}{2 \mathrm{P}}+3 \mathrm{H}_{2}$

Increase in volume $=150-100=50 \mathrm{~mL}$
75. (2)

$$
\begin{array}{ll}
\text { Weight of metal oxide } & =3.6 \mathrm{~g} \\
\text { Weight of metal } & =3.2 \mathrm{~g} \\
\text { Weight of oxygen } & =0.4 \mathrm{~g}
\end{array}
$$

Element	Relative No. of atoms	Simple ratio
Metal	$3.2 / 64=1 / 20$	2
Oxygen	$0.4 / 16=1 / 40$	1

$\therefore \quad$ Formula of the compound $=\mathrm{MnO}$

INORGANIC

76. (3)
$1 s^{2}, 2 s^{2} 2 p^{2}, 3 s^{1}$
(Excited state)
77. (2)
78. (3)

Due to diagonal relationship radius of Li^{+}is close to Mg^{2+} ion.
79. (3)
80. (2)
81. (4)
82. (1)
83. (1)

Correct order of electron affinity is :
$\mathrm{Cl}>\mathrm{F}>\mathrm{S}>\mathrm{O}$
84. (1)

Nitrogen has stable $2 p^{3}$ configuration and also due to high e^{-}charge density at outermost orbit it requires energy to add one extra e^{-}in its outer most shell i.e., its first electron gain enthalpy is positive.
85. (4)

According to Allred and Rochow scale
(C) $\mathrm{EN}_{(\mathrm{AR})}=0.359 \frac{\mathrm{Z}_{\text {eff }}}{\mathrm{r}}+0.744 \quad(r$: radius in $\AA)$
86. (3)
87. (1)
88. (4)
89. (4)
90. (1)

Oxidation state of non-metal increase acidc nature of oxide increase ${ }^{+7} \mathrm{C}_{2} \mathrm{O}_{7}$ is most acidc.

BOTANY

91. (1)

Leeuwenhoek is credited for discovery of first living cell.
92. (2)
93. (3)
94. (4)
95. (2)
96. (3)
97. (4)
98. (2)

PPLO, BGA and bacteria all belongs to prokaryote.
99. (2)
100. (1)

Resistance to antibiotics is provided by plasmid i.e. small circular DNA.
101. (3)
102. (2)

Infolding of membranes can be mesosome, cristae, etc. Found in eukaryotes and prokaryotes both.
103. (2)

3-layered cell envelope function as single protective unit in bacteria i.e. glycocalyx, cell membrane \& cell wall.

104. (1)

Cell membrane of prokaryotes is structurally similar to eukaryotes. Mesosome is infolding of cell membrane.
105. (4)

Prokaryotes - Mycoplasma, BGA, Methanogens, BGA, PPLO.
Eukaryotes - yeast, Rhizopus.
Mesokaryotes - Dinoflagellates
106. (2) 107. (3) 108. (3) 109. (2) 110. (1)
111. (1)

Euglena, Mycoplasma \& Protozoan cells lack cell wall.
112. (4)

RER shows attachment with 60S ribosomal sub unit
113. (3)

Given figure represents G.B in which cis \& trans face is entirely different.
114. (2) 115. (1)
116. (3)

Oxysome only particepates in oxidative phosphorylation.
117. (3)
118. (1)

Plastids have been classified on the basis of pigments.
119. (4) 120. (4)
121. (2)

60S, 40S, 50S, \& 30S are sedimentation cofficients of ribosomal subunits.
122. (2) 123. (2) 124. (2) 125.(1) 126. (2)
127. (1) 128. (2) 129. (4)
130. (2)

Larger and more numeraus nucleoli can be observed in the cell with active protein
synthesis.
131. (3) 132. (3) 133. (2)
134. (2)
"yolk nuclei" are mitochondria found in egg cell.
135. (3)

ZOOLOGY

136. (1) 137. (3)
137. (4)

Collagen is a protein forms white fibres in tissue.

Mentors Eduserv: Plot No.-136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 0612-3223681/2 | 7544015993/6/7 | 7070999604/5
139. (4)
140. (1)

Adipose bears relatively large space between cells
141. (1) 142. (1) 143. (1) 144. (3) 145. (1)
146. (2)
147. (3)

Osteoblasts are main matrix forming cells of bones.
148. (3)

Blood plasma is matrix of blood, doesnot contain collagen.
149. (3) 150. (2) 151. (1)
152. (3)

Tendons connect muscles to bone
153. (2) 154. (3) 155. (1) 156.(2) 157. (3)
158. (2)
159. (2)
160. (2)

Intercalated discs are gap junctions present in cardiac muscles
161. (4)

Neuroglial cells are component nervous tissue.
162. (3) 163. (1) 164. (4) 165.(4) 166. (4)
167. (1)

Due to accumulation of more lactic acid, striped muscles get fatigue very soon.
168. (4) 169. (2)
170. (2)

Middle covering of muscle is perimycium that covers a muscle foscicle
171. (1) 172. (3) 173. (2) 174. (1) 175. (3)
176. (1) 177. (3) 178. (4) 179.(2) 180. (2)

